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Exercise 11.1 Problem 13.1.2 of Boas (2006). (a) Show that the expression u = sin(x £ vt)
describing a sinusoidal wave (see Chapter 7. Figure 2.3), satisfies the wave equation (1.4). Show
that, in general, u = f(x —vt) and u = f(x + vt) satisfy the wave equation, where fis any function
with a second derivative. This is the d’Alembert solution of the wave equation. (See Chapter 4,
Section 11, Example 1.) The function f(x—uvt) represents a wave moving in the positive z direction
and f(x + vt) represents a wave moving in the opposite direction.

(b) Show that u(r,t) = (1/r)f(r — vt) and u(r,t) = (1/r)f(r + vt) satisfy the wave equation in
spherical coordinates. [Use the first term of (7.1) for V?u since here u is independent of 6 and
¢.] These functions represent spherical waves spreading out from the origin or converging on the
origin.

a) First check the D’Alembert solutions,

. 9*u . *u 2 . 2 1 Pu
u = sin(x — vt) — 922 = sin(x — vt), 2= sin(x — vt), SVu = wirTR
S L Pu T Pu a2y . 2. 1 Pu

u= f(xz—uvt) > oz = [ — vt), oz = U [ —vt), SV = warTE

) L Pu nio, Pu W2 M . 2 1 Pu

u= f(x+uvt) —> ke [z +vt), Sz =Y [z +vt), SV u = iyl

b) Now, check on the spherical form.
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11.2

Exercise 11.2 Problem 13.2.10 of Boas (2006). You do not need to make a computer plot of your
results.

Find the steady-state temperature distribution in a metal plate 10 em square if one side is held at
100° and the other three sides at 0°. Find the temperature at the center of the plate. (The answer,
but not the solution method, is written out in Boas).

Start from a general guess and check solution, similar to that in Section 11.2. Evaluate it on the
boundaries. Note that while it is arbitrary which direction (x or y) is taken to be the oscillatory
one, we can anticipate that the Fourier transform in x will simplify the complicated behavior in
in transitioning from the zero temperatures to the 100 degree temperature on the one hot side.
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By symmetry of the boundaries, we can anticipate only the Fourier components that will be
equal on both sides of the plate. Based on where we choose the origin (x=0, x=L), this will turn
out to be a sine series with periodicity on the interval from O, L.



Considering (11.64-11.65), these are satisfied if A, Al A /(21), producing a sine series,
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Now, we determine the Ag coeflicients by Fourier’s trick,
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Some algebra combines these two equations for the remaining coeflicients as
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Evaluating at the center of the plate gives
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Alternatively, you could have just argued that the vanishing Laplacian implies that there should
be no anomalies, so the temperature at the center should be the average of the temperature
on the four plates. This turns out to be correct, but I’'m not sure how far you can push this from
arigorous perspective.



11.3

Exercise 11.3 Problem 13.3.2 of Boas (2006). You do not need to make a computer plot of your
results.

A bar 10 em long with insulated sides is initially at 100°. Starting at t = 0, the ends are held at 0°.
Find the temperature distribution in the bar at time t. (The answer, but not the solution method,
is written out in Boas).

As the sides are insulated, we do not expect any dependence on y, i.e., the temperature will be
uniform in stripes across the bar, but we do expect dependences on a, ¢, Thus,
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For odd n. Thus,
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11.4

Exercise 11.4 Write the Helmholtz equation in earth coordinates. Do you think the separable
solutions will be the same or different from those found in spherical coordinates? Why or why not?

To interpret the Helmholtz equation in earth coordinates, we just need to look up the Laplacian
from (8.41). I'll use u for the Helmholtz unknown, so as not to confuse with longituyde ¢.
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If we assume separable form for u, then

u=Y_ Z(3)P()T(¥)

Each term in that series is a product of a function of height (3) times a function of longitude
(¢) times a function of latitude (). Contrast this against the separable solution in spherical
coordinates
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Since there is a simple mapping from spherical to earth coordinates, r — rg + 3,0 — 0 — /2,
which preserves a one-to-one functional relationship between one earth coordinate variable and
one spherical coordinate variable, all of the coordinate surfaces are shared between carth coordi-
nates and spherical coordinates. Since separable solutions are solutions where each variable can
vary independently, and since the different variables are not mixed up between earth and spherical
coordinates, we expect that there will be equivalent functions in earth coordinates (earth harmon-
ics?) to the separable solutions in spherical coordinates (spherical harmonics). The only difference
between these functions will be that the arguments will be processed to make the transformation
r—ro+30 —9—xw/2



11.6
11.8.4 Scheming Schematics and Articulate Analysis

Exercise 11.6 Look at http: //tinyurl. com/mljujml and http: // tinyurl. com/ ol3al4{7.
a) Contrast these against the separation of variables in the Cartesian coordinate cases. b) Why
aren’t the solutions sines and cosines? ¢) How can it matter which coordinate system we choose—
that is, what is so special about separable solutions?

a) The separable solutions to the Helmholtz equation in spherical and cylindrical coordinates differ
from each other and from Cartesian coordinates. In Cartesian coordinates, we have sines, cosines,
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and exponentials (or equivalently sinh and cosh). In parabolic cylindrical coordinates, the z axis
has sines and cosines, as in Cartesian, but the u and v separable solutions are very different because
of the Weber differential equations that result during separation. In the spherical case, # has sines

a2

and cosines as 542 oceurs without variable coefficients in the spherical version of Helmholtz, but
do?

both r and ¢ have non-constant coefficients in that system, so different separable solutions result
the Legendre polynomials (and the associated Legendre functions when r is retained).

b) The other functions that differ from sines and cosines occur because in the new coordinate
systems, the coefficients of the derivatives are not constants. We know that a constant coefficient,
homogeneous differential equation will have exponentials, sines, and cosines, but in these other
coordinate systems the coefficients are not constant. Physically. these differences result from the
curvature of the coordinate surfaces in space.

¢) The overall solution to the differential equation is a sum over all separable solutions, such that
any initial or boundary conditions supplied are satisfied. However, each term in the separable series
can depend on the coordinate system, as they are found by the property that they are constant
over different surfaces (spherical shells, cylinders, ete.). They are all orthogonal function sets, and
in fact they are generally complete, so that we can convert between different representations in
different coordinate systems, but only when the whole sum is retained. Each term in the series is
not guaranteed to be represented by a single term in the series in a different coordinate system
(just like our Taylor series versus Fourier series problem on the midterm).



