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Another Inspiration: 
Jon Corum, 13pt.com, nytimes.com 

Still, this tells us nothing about Strouhal numbers.
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Some of my own favorites:

(Stone 1966). Elsewhere the growth rates are too slow
to compete with the damping due to turbulent mixing.

BFF argue that the ML instability linear growth rates
are only weakly affected by large-scale straining, yet
Spall (1997) shows that a large-scale strain can substan-
tially alter finite-amplitude baroclinic instability. This
effect is notable in Fig. 1a near (450, 80) km, where a
powerful surface temperature front is pinched between
three mesoscale eddies (Fig. 1b). MLEs develop only
after the front exits the strain field near (400, 140) km.
The strain rates in this idealized simulation are larger
than is typical in the real ocean, yet MLEs are present
throughout the domain. Thus, while mesoscale strain-
ing can occasionally suppress MLEs, the effect is con-
fined to the regions of largest convergence.

Basinwide restratification can occur only by a net
upward transport of buoyancy. That is, on the whole,
the near-surface ML is made more buoyant and the
deeper ML becomes denser. The vertical eddy buoy-
ancy flux, w!b!, is shaded in Fig. 1a. (Primes denote
departures from along-channel, x-direction averages;
see Table 1). The figure shows fluxes near the depth
where they are largest (20 m). Two features emerge.
First the largest vertical fluxes are small-scale features
clustered near fronts. In fact, filtering w! and b! indi-
cates that 70% (50%) of the basin average, w!b!

xy
, is

generated by scales smaller than 12 km (8 km). (Over-
bars denote along-channel averages, and superscripts
indicate additional averaging along other coordinates;

see Table 1.) Second, w!b!
xy

is positive rather than
negative, implying a tendency to restratify the ML. The
shading in Fig. 1b indicates regions where |u!Hb!| is larg-
est. The horizontal fluxes are coherent on scales asso-
ciated with mesoscale eddies, while the vertical fluxes
are distinctly submesoscale. The mesoscale eddies and
MLEs have comparable horizontal velocities, but me-
soscale eddies stir over longer distances and dominate
the horizontal fluxes. MLEs and fronts have larger
Rossby number and thus larger vertical velocities, so
they dominate the vertical fluxes. In sum, mesoscale
eddies dominate the lateral fluxes while fronts and
MLEs dominate vertical fluxes and restratification.

The role of MLEs in restratification is clarified by
comparing the simulation described above with an oth-
erwise identical simulation run without a diurnal cycle
from day 900 to day 1000. When the resolution is in-
creased at day 900, near-surface restratification in-
creases as a result of sharper fronts from mesoscale
straining (Spall 1997; Nurser and Zhang 2000; Oschlies
2002; Lapeyre et al. 2006). But, do MLEs and their
associated fronts lead to even more restratification as
suggested by BFF? With and without a continued diur-
nal cycle, the mesoscale eddies differ little and fronts of
a similar strength develop at the surface—the averaged
surface |!Hb|2 differs by less than 25%. But, without a
diurnal cycle the ML disappears through unchallenged
restratification, and soon MLEs are stabilized. The av-
erage flux, w!b!

xy
, in the upper 40 m is half (a third) that

FIG. 1. Contours of temperature at (a) the surface and (b) below the ML base in a simulation with both mesoscale eddies
and MLEs (0.2°C contour intervals). Shading indicates w!b! in (a) and | u!Hb!| in (b) at 20-m depth, the depth at which eddy
fluxes are largest.
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soscale straining event as in Fig. 1 or the edge of a
recent vertical mixing event (Price 1981; Haine and
Marshall 1998). The front is initialized as a horizontal
density gradient in a flat-bottom reentrant channel.
Vertical stratification is uniform in the interior and

weak in a surface ML. A typical model configuration is
shown in Fig. 2a and detailed in appendix B. The initial
velocity may be either resting (hereafter “unbalanced”)
or in thermal wind balance (“balanced”). Many other
parameters vary across the simulations, and resolution

FIG. 2. Temperature (°C) during two typical simulations of a ML front spinning down: (a)–(c) no diurnal cycle and (d)–(f)
with diurnal cycle and convective adjustment. (Black contour interval ! 0.01°C; white contour interval ! 0.1°C.)
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nonparallel. This is, of course, impossible to ensure in a freely-
evolving, turbulent flow, as the symmetric (diffusive) part of R will
work to align all of the tracer contours with the local isoneutral
surface (Griffies et al., 1998). For a model run of finite length, how-
ever, a clever initialization of the tracer fields might be able to keep
the gradients from becoming too parallel for as long as the simula-
tion is running.

Bratseth (1998) used atmospheric particle trajectories derived
from an AGCM to advect a large set of tracer fields, whose initial
distributions were products of Chebyshev polynomials. These ini-
tial distributions were chosen because of their wavelike character-
istics on the interval ½"1;1#, and because higher-order polynomials
would effectively sample smaller eddies. Loosely following this
approach, Bachman and Fox-Kemper (2013) initialized the tracer
fields sinusoidally. In their approach, the tracer concentrations at
time t ¼ 0 satisfy

saðx; y; zÞ ¼
sin a

2
py
Ly

! "
a even

sin aþ1
2

# $ pz
H

# $
a odd

8
<

: ð32Þ

where the tracers are initialized in pairs so that one tracer varies in
y and its complement varies in z. Here Ly is the meridional width of
the domain and H is the total depth.

These tracer fields are qualitatively similar to Chebyshev poly-
nomials in their obvious wavelike characteristics, but also because
both sets of functions are orthogonal on a closed subset of R. Ini-
tializing the tracers in this way maintained misalignment of the
tracer gradients until the simulation stopping criterion was
reached. A set of tracers initialized with the gravest wavenumbers
i ¼ f1;2;3g was found to produce the best results in reproducing
buoyancy fluxes, likely because the buoyancy distribution in this
problem is also large scale. As the theory of ocean dispersion

Fig. 1. Error bars for (a) and (b) the reconstructed u0b0 and (c)–(f) R from a zonally-averaged simulation using eight tracers, which are initialized as in (32). The red lines
indicate the values for each flux and tensor element obtained using all eight tracers, which are able to accurately reproduce the true buoyancy flux (blue lines in panels (a) and
(b)). The shaded regions indicate the range of values obtained from all possible subsets of five tracers (lightest gray), six tracers (gray), and seven tracers (darkest gray) from
the pseudoinversion. The shaded regions become narrower as fewer tracers are withheld, indicating that each additional tracer yields increasingly precise estimates, but
sometimes the buoyancy fluxes (upper panels) lie outside of the seven tracer range, indicating inaccuracy in terms of (31). This range resulting from all estimates withholding
some tracers can also be interpreted as a measure of uncertainty in the estimation of each term for a given set of tracers. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this article.)
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[12] The second ratio, which has not been recognized
previously, measures buoyancy-forced production against
wave-forced production, and is given by

w′b′s
!u′hw′ " ∂us=∂z

# Bs

u2*us=h
¼

w3
*=h

w3
*L
=h

¼ h
LL

: ð3Þ

Here Bs is the surface buoyancy flux (defined to be positive for
an upward flux cooling the ocean). The scaling velocity and
length scales for buoyancy-forced turbulence, which arise
from scaling arguments for pure convection, are w* ¼ Bshð Þ1

3

and h [e.g., Large et al., 1994]. The ratio in equation (3) can
be written in terms of the Langmuir stability length
LL =!w*L

3 /Bs, which is the analogue for convective-Langmuir
turbulence of the Obukhov length for convective-shear tur-
bulence: In analogy with the convective case [Thorpe, 2005,
p. 121], when h/LL < 1 wave forcing dominates the OSBL;
when h/LL > 1 buoyancy forcing dominates the OSBL.
[13] A regime diagram for the OSBL can then be defined

with axes La ¼ u*=us
! "1

2 and h/LL = w*
3/w*L

3 . This regime
diagram is similar to the one defined by Li et al. [2005], but
with two important differences. Firstly, here we interpret the
axes as the ratio of terms that produce TKE, processes that
underpin any parameterization of the OSBL mixing,
whereas Li et al. [2005] determine their parameters from
the mean momentum equation and are perhaps there-
fore more suitable for linear stability analysis. Secondly,
Li et al.’s stability parameter is the Hoenikker number,
Ho = (4d/h)h/LL, which uses d, the depth scale of penetration

of the Stokes drift, as its length scale. Here we use the tur-
bulent length scale, which, as argued above using term 4 of
equation (1), is the mixed layer depth, h. Figure 3 shows
such a regime diagram.
[14] Now, we can write turbulence quantities in terms of

the scaling length and velocity scales and a dimensionless
function. For example, in the mixed layer, which lies below
the region near the surface directly affected by wave break-
ing, the dissipation rate, which is interesting because it can
be measured [e.g., D’Asaro et al., 2011], becomes

ɛ ¼ U3

h
fɛ

z
h
; La;

h
LL

# $
; ð4Þ

where the scaling velocity U = u*, w*L, or w* for wind, wave,
or buoyancy forced turbulence and fɛ(z/h, La, h/LL) is a
universal function. Following the approach taken in the
atmospheric boundary layer [e.g., Moeng and Sullivan,
1994] the dissipation in the middle of the mixed layer, for
example, can be written as a linear combination of the dis-
sipation from each the three production mechanisms, namely

ɛ z=h ¼ 0:5ð Þ ¼ As

u3*
h
þ AL

w3
*L
h

þ Ac

w3
*
h

; ð5Þ

[15] The LES results of Grant and Belcher [2009] are

consistent with As ¼ 2 1! e!
1
2La

% &
, AL = 0.22. Simulations

of the convective boundary layer suggest that Ac = 0.3
[Moeng and Sullivan, 1994]. This scaling applies under

Figure 3. Regime diagram for mixing in the OSBL. Main panel: Colored contours show turbulent dissipation rate,
log10(ɛh/u*3). Thick solid lines divide the regime diagram into regions where single forcings produce greater that 90% of total
dissipation. Overlaid as white contours is the joint pdf of La and h/Ll computed for the Southern Ocean winter (JJA). Lower
panel: Variation of ɛh/u*

3 with La along horizontal dashed line in main panel. The dotted line on the lower panel indicates
La = 0.35, the value used in Figure 4. Left panel: Variation of ɛh/u*3 with h/LL along vertical dashed line in main panel.
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Parameter Symbol Value
Mixed layer depth h 100 m
Total depth H 500 m
Mixed layer stratification Nm 2 ⇥ 10−3 s−1

Thermocline stratification Nt 8 ⇥ 10−3 s−1

Mixed layer shear ⇤m 10−4 s−1

Thermocline shear ⇤t 10−4 s−1

Coriolis frequency f 10−4 s−1

Domain size a 500 km
Numerical resolution �x ⇠ 1 km

TABLE 1. Parameters used throughout this article unless otherwise noted. These are typical of the
wintertime midlatitude ocean.
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FIGURE 5. Linear stability analysis of the model equations. (a) growth rates and (d) phase speeds of the full
model, (b) growth rates and (e) phase speeds of the thermocline-only model, (c) growth rates and (f ) phase
speeds of the mixed-layer-only model. Growth rates and phase speeds are shown in blue; the growth rates
and phase speeds of the full model are overlaid for reference in gray. The phase speed of a surface edge
wave is given in faint red in (f ).
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the location of the peaks in an inertially-dominated versus a western-intensiéed
calculation.

iv. Fluxes through the boundary. Figure 8 shows the frictional èux through the boundary for
a western-intensiéed and an inertially-dominatedcalculation. The removal crisis is present in
the èux through the western boundary of the inertially-dominatedcalculation.A dip in the èux
of the western-intensiéed calculation also occurs, but it does not reverse the direction of the
èux. Note how the maximum èux through the western boundary is nearly 2.5 times larger in the
inertially-dominatedcase than in the western-intensiéed one. Because the value of the viscosity
at the boundary is 20 times smaller in the inertially-dominated case, this means that the
maximum vorticity gradient at the boundary in this calculation is approximately 50 times
greater than in the western intensiéed case! The èuxes through the eastern boundary are
negligible in the western-intensiéed case, while in the inertially-dominatedcase the maximum
èux through the eastern boundary is only two times smaller than the maximum through the
western boundary. Thus, Figure 8 clearly shows the removal crisis, the larger gradient of
vorticity at the boundary in the inertially-dominatedcase, and the necessity of the recirculation
gyre reaching the eastern boundary in the inertially-dominatedcalculation.

The frictional èux through the western boundary needed to remove the wind input at the
same latitude where it is injected (as in Stommel, 1948; Munk, 1950), and the primary
assumption of Hughes and de Cuevas (2001) is indicated with dotted lines in Figure 8.
Clearly, the dip in the frictional èux and the reversal of the frictional èux in the northwest
corner make the removal of vorticity occur at a different latitude in the western-intensiéed

Figure 8. Maps of the normal frictional èux through each of the boundaries for (a) the western-
intensiéed Reb 5 0.25, Rei 5 5 calculation and (b) the inertially-dominated Reb 5 5, Rei 5 5
calculation (on right). The four plots surrounding each contour plot indicate the frictional èux
through the nearest boundary to each box (2dM

3 πz) as a function of distance along the boundary.
The èux through the western boundary needed to remove the wind vorticity input at the same
latitude is overlaid with dashed lines. Arrows denote the direction of the frictional èux of positive
vorticity. Note that the scales of the èux plots are different.

188 [62, 2Journal of Marine Research
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