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Basic Machinery

The purpose of this chapter is to record a number of results that are es-
sential tools for the discussion of the problems already described. Much
of this material is elementary and is discussed here primarily to produce
a consistent notation for later use. Reference will be made to some of the
good available textbooks. But some of the material is given what may be an
unfamiliar interpretation, and I urge everyone to at least skim the chapter.

Our basic tools are those of matrix and vector algebra as they relate to
the solution of simultaneous equations, and some elementary statistical ideas
mainly concerning covariance, correlation, and dispersion. Least squares is
reviewed, with an emphasis placed upon the arbitrariness of the distinction
between knowns, unknowns, and noise. The singular-value decomposition
is a central building block, producing the clearest understanding of least
squares and related formulations. I introduce the Gauss-Markov theorem
and its use in making property maps, as an alternative method for obtaining
solutions to simultaneous equations, and show its relation to and distinction
from least squares. The chapter ends with a brief discussion of recursive
least squares and estimation as essential background for the time-dependent
methods of Chapter 6.

3.1 Matrix and Vector Algebra

This subject is very large and well developed, and it is not my intention to
repeat material better found elsewhere (e.g., Noble & Daniel, 1977; Strang,
1988). Only a brief survey of central results is provided.

A matrix is an M x N array of elements of the form

Normally a matrix is denoted by a boldface capital letter. A vector is a
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special case of an M x 1 matrix, written as a boldface lower-case letter, for
example, q. Corresponding capital or lower-case letters for Greek symbols
are also indicated in boldface. Unless otherwise stipulated, vectors are un-
derstood to be column vectors. The transpose of a matrix interchanges its
rows and columns. Transposition applied to vectors is sometimes used to

save space in printing, for example, q© = [g1 g2 ...qn]7 is the same as
q1
q2
q= .
anN

3.1.1 Matrices and Vectors

The inner, or dot, product between two L x 1 vectors a, b is written alb =
a-b= Ef:l a;b; and is a scalar. Such an inner product is the projection of
a onto b (or vice versa). The magnitude of this projection can be measured
as

alb = |a||b| cos ¢

where cos ¢ ranges between zero, when the vectors are orthogonal, and one,
when they are parallel.

Suppose we have a collection of N vectors, e;, each of dimension N. If
it is possible to represent perfectly an arbitrary /N—-dimensional vector f as
the linear sum

N
f=> e, (3.1.1)
=1

then e; are said to be a spanning set. A necessary and sufficient condition
for them to be a spanning set is that they should be independent-that is,
no one of them can be perfectly representable by the others:

N
ejo— >, Biei#0, 1<jo<N, (3.1.2)
i=1, ijo
for any choice of ;.

The expansion coefficients o; in (3.1.1) are obtained by taking the dot
product of (3.1.1) with each of the vectors in turn:

N
Y aiefe; =eff, 1<k<N, (3.1.3)
=1
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Figure 3—1. An arbitrary

two-dimensional vector f can

be expanded exactly in any "
two nonparallel vectors e;,
ey, as in (a). In (b), the angle
@ is not actually zero, but as
it becomes arbitrarily small,
it is readily confirmed that
the slightest errors in knowl-
edge of f render unstable cal- (a) (b)
culation of the expansion ‘

coefficients.

€

€

-

a system of N equations in N unknowns. The «; are most readily found if
the e; are a mutually orthonormal set—that is, if

T

e; ej = ij,

v

but this requirement is not necessary for a spanning set. With a spanning
set, the information contained in the set of projections, elf = fTe;, is
adequate then to determine the a; and thus all the information required to
reconstruct f.

The concept of nearly dependent vectors is helpful and can be understood
heuristically. Consider Figure 3-1a, in which the space is two-dimensional.
Then the two vectors e1, ez, as depicted there, are independent and can be
used to expand an arbitrary two-dimensional vector f in the plane. But if
the vectors become nearly parallel, as in Figure 3-1b, as long as they are
not exactly parallel, they can still be used mathematically to represent f
perfectly. However, one anticipates, and we find in practice, that as the
angle ¢ between them becomes very small, they are almost dependent, and
numerical problems arise in finding the expansion coefficients o1, as. The
generalization to higher dimensions is left to the reader’s intuition.

It has been found convenient and fruitful to define multiplication of two
matrices A, B by the operation C = AB, such that

P
Cij =Y ApBp;. (3.1.4)
p=1

For the definition (3.1.4) to make sense, A must be an M X P matrix and B
must be P x N (including the special case of P x 1, a column vector). That
is, the two matrices must be conformable. If two matrices are multiplied, or
a matrix and a vector are multiplied, conformability is implied; otherwise
one can be assured that an error has been made. Note that AB # BA even
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where both products exist, except under special circumstances. For both
products to exist, A and B must be square and of the same dimension.

The mathematical operation in (3.1.4) may appear arbitrary, but a phys-
ical interpretation is available: Matrix multiplication is the dot product of
all of the rows of A with all the columns of B.

If we define a matrix, E, each of whose columns is the corresponding
vector e;, and a vector, & = {a;}, in the same order, the expansion (3.1.1)
can be written in the compact form

f = Eo. (3.1.5)

The transpose of a matrix A is written AT and is defined as {A;}T = Aji,
an interchange of the rows and columns of A. A symmetric matriz is one for
which AT = A. The product AT A represents the array of all the dot prod-
ucts of the columns of A with themselves, and similarly, AAT represents the
set of all dot products of all the rows of A with themselves. It follows that
(AB)T = BTAT. Because we have (AAT)T = AAT, (ATA)T = ATA,
both these matrices are symmetric ones. [We used (AT)T = A]

The trace of a square M x M matrix A is defined as trace(A) = Efw A
A diagonal matriz is square and zero except for the terms along the main
diagonal. The operator diag(q) makes a square diagonal matrix with q
along the main diagonal.

The special Lx L diagonal matrix I, with Iy; = 1, is the identity. Usually,
when the dimension of Iy, is clear from the context, the subscript is omitted.
If there is a matrix B, such that BE = I, then B is the left-inverse of E. If
B is the left inverse of E and E is square, a standard result is that it must
also be a right inverse: EB = I, B is then called the inverse of E and is
usually written E~1. If E is not square, such an inverse cannot exist, and
special inverses, like a left inverse, are sometimes written E* and referred
to as generalized inverses. Some of them will be encountered later. A useful
result is that (AB)~!' = B~1A~1 if the inverses exist. Square matrices
with inverses are nonsingular.

We need: the idea of the length, or norm, of a vector. Several choices are
possible; for present purposes, the conventional /3 norm,

1/2

€]l = (£76)/? = (i ff) (3.1.6)

is most useful; often the subscript will be omitted. This definition leads in
turn to the measure of distance between two vectors, a, b as

la—bls = /(a—b)T (a—b), (3.1.7)
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the familiar Cartesian distance. Distances can also be measured in such a
way that deviations of certain elements of ¢ = a — b count for more than
others—that is, a metric, or set of weights can be introduced with a definition

llell = \/Zi ciWiici (3.1.8)

depending upon the importance to be attached to magnitudes of differ-
ent elements, stretching and shrinking various coordinates. Finally, in the
most general form, distance can be measured in a coordinate system both
stretched and rotated relative to the original one

clw = VeTWe (3.1.9)

where W is an arbitrary matrix (but usually, for physical reasons, symmetric
and positive definite'). :
Consider a set of M linear equations in N unknowns,

Ex=y. (3.1.10)

Because of the appearance of simultaneous equations in situations in which
the y; are observed, and where x are parameters that we wish to determine,
it is often convenient to refer to (3.1.10) as a set of measurements of x
which produced the observations or data, y. If M > N, the system is
said to be overdetermined, or formally overdetermined. If M < N, it is
underdetermined, and if M = N, it is just-determined or formally just-
determined. The use of the word formally has a purpose we will come to
later. Knowledge of the matrix inverse to E would make it easy to solve a
set of L equations in L unknowns by left-multiplying (3.1.10) by E~!. The
reader is cautioned that although matrix inverses are a very powerful tool,
one is usually ill advised to solve large sets of simultaneous equations by
inverting the coefficient matrix (e.g., Golub & Van Loan, 1989).

There are several ways to view the meaning of any set of linear simultane-
ous equations. If the columns of E continue to be denoted e;, but without
necessarily stipulating that they are either a spanning set or orthogonal,
then (3.1.10) is of the form,

ri1€e1 + xo€2 + -+ Tpeny =Y. (3.1.11)

The ability to so describe an arbitrary y, or to solve the equations, would
thus depend upon whether the M x 1 vector y can be specified by a sum of
N column vectors, e;~that is, it would depend upon their being a spanning
set. In this view, the elements of x are simply the corresponding expansion

1 positive definite will be defined later.
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suchooefficients. Depending upon the ratio of M to N-that is, the number
e thof equations to unknown elements—one faces the possibility that there are
finiticewer expansion vectors e; than elements of y (M > N), or that there are
nore expansion vectors available than elements of y (M < N). Thus, the
(3.1.sverdetermined case corresponds to having fewer expansion vectors, and
‘he underdetermined case corresponds to having more expansion vectors,
diffe;yan the dimension of y. It is possible that in the overdetermined case,
in thpe too-few expansion vectors are not actually independent, so that there
0 boty e even fewer vectors available than is first apparent. Similarly, in the
inderdetermined case, there is the possibility that although it appears we
(3'1.311ave more expansion vectors than required, fewer may be independent than
the number of elements of y, and the consequences of that case need to be
metriypderstood as well.
Alternatively, if the rows of E are denoted r/,1<i< M, (3.1.10) is a
set of M-inner products,

.1.10 rTx=y;, 1<i<M. (3.1.12)
whic] '
, ineThat is, the set of simultaneous equations is equivalent to being provided
Cof 1With the value of M—dot products of the N-dimensional unknown vector,
em % with M known vectors, r;. Whether that is sufficient information to
it i=determine x depends upon whether the r; are a spanning set. In this view, in
jus tthe overdetermined case, one has more dot products available than unknown
elements z;, and in the underdetermined case, there are fewer such values

me t¢
lve “than unknowns. (These statements are particularly transparent if the rows
The°" columns happen to be orthonormal vectors, and the reader is urged to

tool examine the relative determinancy in that special situation.)

ns by

tane. 3.1.2 Identities, Differentiation, and So Forth

hout Here are some identities and matrix/vector definitions that prove useful.

onal, A square positive definite matrix A is one for which the scalar quadratic
form, )

1.11) J=xTAx, (3.1.13)

ould is positive for all vectors x. (It suffices to consider only symmetric A because
m of for a general matrix, xT Ax = xT[(A + AT)/2]x, which follows from the
ning scalar property of the quadratic form.) If J > 0 for all x, A is positive
sion gemidefinite, or nonnegative definite. Linear algebra books show that a

necessary and sufficient requirement for positive definiteness is that A have
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all positive eigenvalues and a semidefinite one must have all nonnegative
eigenvalues.

Nothing has been said about actually finding the numerical values of
either the matrix inverse or the eigenvectors and eigenvalues. Computa-
tional algorithms for obtaining them have been developed by experts and
are discussed in many good textbooks (Lawson & Hanson, 1974; Golub &
van Loan, 1989; Press, Flannery, Teukolsky, & Vetterling, 1992; etc.), and
software systems like MATLAB implement them in easy-to-use form. For
purposes of this book, we assume the reader has at least a rudimentary
knowledge of these techniques and access to a good software implementa-
tion.

We end up doing a certain amount of differentiation and other operations
with respect to matrices and vectors. A number of formulas are very helpful
and save a lot of writing. They are all demonstrated by doing the derivatives
term-by-term. Let q, r be N x 1 column vectors, and A, B, C be matrices.
Then if s is any scalar,

0Os
8?1
Os
— =b= . 3.1.14
o . (31.14)
0s
ogN
is a vector (the gradient). The second derivative of a scalar,
92%s &%s 0%
H%s _ O Os o %{ 0q192 Oq19n (3 ) 15)
oq> | 04¢idg; | 0?%s ) S 9% ’ o
dqnq1 03
is the Hessian of s.
The derivative of one vector by another is a matrix:
or1 Ora . Orm
5 5 gﬁ Oq1 85(11
r T 1 . . M
_— = — = = P . 1.
IS L I (110
oy, . . Orm
Oqn OGN

If r, q are of the same dimension, the determinant of P is the Jacobian of
r.
Assuming conformability, the inner product

I'Tq = qTI‘
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is a scalar, and

— = 3.1.1
9(q"q)
——~ =2q. 3.1.18
o (3.1.18)
For a quadratic form,
J= qTAq
oJ
= —(A+ AT 1.
34 (A+A%)q, (3.1.19)
and its Hessian is A + AT.
Let A, B, C be square. Then
OtraceA
— =1 1.2
Otrace(BAC) T ~T
— - =B'C 1.21)
A T
atrace(g ABA ) _ A(B+BT). (3.1.22)

Rogers (1980) is an entire volume of matrix derivative identities, and many
other useful properties are discussed by Magnus and Neudecker (1988).

There are a few, unfortunately unintuitive, matrix inversion identities
that are essential to some of the later chapters. Liebelt (1967, Section 1-
19) derives them by considering the square, partitioned matrix

{ oo } (3.1.23)

where AT = A, CT = C, but B can be rectangular of conformable dimen-
sions in (3.1.23). The most important of the identities, sometimes called
the matriz inversion lemma is, in one form,

{C-BTA™'B} '=Cc'-CcBY(BC'BT-A)"'BC! (3.1.24)

where it is assumed that the inverses exist. (The history of this not-very-
obvious identity is discussed by Haykin, 1986, p. 385.) A variant (Liebelt’s
equation 1-51) is

ABT(C+BABT) ! = (A~'+BTC'B)'BTC!. (3.1.25)

Both (3.1.24)—(3.1.25) are readily confirmed by direct multiplication, for
example, by showing that ABT(C + BABT)~! times the right-hand side
of (3.1.25) is the identity.
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Another identity, found by completing the square, is demonstrated by
directly multiplying it out and requires C = CT (A is unrestricted, but the
matrices must be conformable as shown):

ACAT-BAT-ABT = (A-BC!)c(A-BC H)T-BC'BT. (3.1.26)

A number of useful definitions of a matrix norm exist. For present pur-
poses the so-called spectral norm or 2-norm defined as

|Al2 = \/maximum eigenvalue of (ATA) (3.1.27)

is usually adequate. Without difficulty (e.g., Haykin, 1986, p. 61), it may

be seen that this definition is equivalent to

xTATAx . | Ax||2
xTx [B4P

|A |2 = max (3.1.28)

where the maximum is defined over all vectors x. Another useful measure
is the Frobenius norm,

lAlFr = \/Zj\i1 Z;il Afj = y/trace(ATA). (3.1.29)

Neither definition requires A to be square.
These norms permit one to derive various useful results. Consider one
illustration. Q is square, and ||Q|| < 1, then

I+Q) '=1-Q+Q%*-..., (3.1.30)

which may be verified by multiplying both sides by I + Q, doing term-by-
term multiplication and measuring the remainders with either norm.

3.1.83 Gram-Schmidt Process

One often has a set of p-independent but nonorthonormal vectors h;, and
it is convenient to find a new set g;, which are orthonormal. The Gram-
Schmidt process operates by induction. Suppose we have orthonormalized
the first k of the h; to a new set, g;, and wish to generate the k 4 1st. Let

k
8k+1 = hgt1 — Z’ngj . (3.1.31)
J

Because gj+1 must be orthogonal to the preceding g;, i = 1, k, we take
the dot products of (3.1.31) with each of these vectors, producing a set
of simultaneous equations for determining the unknown «;. The resulting
8k+1 is easily given unit norm by division by its length.
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If one has the first £ of IV necessary vectors, one needs an additional
N — k independent vectors h;. There are several possibilities. One might
simply generate the necessary vectors by filling their elements with ran-
dom numbers. Or one might take a very simple trial set like hyi1; =
1 0 0 ... 0T, hgyo =100 1 . . 0],.... If one is unlucky, the
set might prove not to be independent. But a simple numerical perturba-
tion usually suffices to render them so. In practice, the algorithm is changed
to what is usually called the modified Gram-Schmidt process (see Lawson &
Hanson, 1974) for purposes of numerical stability.

3.2 Simple Statistics; Regression

Some statistical ideas are required, but the discussion is confined to stating
some basic notions and to developing a notation. A statistics text such
as Cramér (1946), or one on regression such as Seber (1977), should be
consulted for real understanding. (

We require the idea of a probability density for a random variable z. This
subject is a very deep one-as described, for example, by Feller (1957) and
Jeffreys (1961)-but our approach will be heuristic. Suppose that an arbi-
trarily large number of experiments can be conducted for the determination
of the values of z, denoted X;, 1 < %, and a histogram of the experimental
values found. The frequency function, or probability density, will be defined
as the limit, supposing it exists, of the histogram per bin width of an ar-
bitrarily large number of experiments divided into bins of arbitrarily small
value ranges. Let the corresponding limiting density or frequency function
be denoted p,(X). (This notation distinguishes between a random variable,
z, and the numerical values it assumes, X. The distinction is not always
preserved where the context prevents confusion.) The average, or mean, or
expected value is denoted < x > and defined as

<z>= / Xpo(X)dX (3.2.1)
all x '

and is the center of mass of p,(X). Using the definition of a frequency
function, it is easy to show heuristically that the sample average or mean,

1 :
<zr>yN=—) X;, 3.2.2
T >N N lzzl i ( )
when it exists, will usually asymptotically approach < z-> in the limit as N
approaches infinity. Knowledge of the true mean value of a random variable
is commonly all that we are willing to assume known. If forced to forecast
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the numerical value of z under such circumstances, often the best we can
do is to employ < x >. If the deviation from the true mean is denoted z’
so that x = < £ > + 2/, such a forecast has the virtue that we are assured
the average forecast error, < z’ >, would be zero if many such forecasts are
made. The bracket operation is very important throughout this book; it
has the property that if a is a nonrandom quantity, < axz >= a <z >.

The idea of a frequency function generalizes easily to two or more random
variables, z, y. We can in concept do an arbitrarily large number of experi-
ments in which we count the occurrences of differing pair values, (X;, Y;), of
z, y and make a histogram, dividing by the bin area, and taking the limit to
produce a joint probability density, pzy (X, Y). A simple example would be
the simultaneous measurement by a current meter of the two components
of horizontal velocity.

An important use of joint probability densities is in what is known as
conditional probability. Suppose that the joint probability density for z, vy is
known and furthermore, y = Y—that is, information is available concerning
the actual value of y. What then is the probability density for giveﬁ that
a particular value for y is known to have occurred? This new frequency
function is usually written as p;),(X|Y) and is read as “the probability of
x, given that y has occurred with value Y.” It follows immediately from
the definition of the probability density that ’

Pay(X, Y)
pm|y(X|Y) Py V) (3.2.3)
(This equation is readily interpreted by going back to the original experi-
mental concept and understanding the restriction on x given that y is known
to lie within one of the bins.)

If one finds that pgy(X,Y) = pe(X)py(Y), then z, y are said to be
independent. Using the joint frequency function, define the average product
as

< zy>= / / XY poy(X, Y)dXdY . (3.2.4)
all x,v ‘

Should < (z— < z >)(y — <y >) > # 0, z, y are said to covary or to
be correlated. From the definition of frequency function and the bracket
operation, if x, y are independent, then < (z— < 2z >)(y — <y >) >
= 0. Under these circumstances x, y are uncorrelated or do not covary.
Independence implies lack of correlation, but the reverse is not necessarily
true. If the two variables are independent, then (3.2.3) is k

px\y(X|Y) :pa:(X); (3'2'5)
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that is, knowledge of the value of y does not change the probability density
for xz—a sensible result—and there is then no predictive power for one variable
given knowledge of the other.

We need the idea of dispersion—the expected or average squared value of
some quantity about some interesting value, like its mean. The most familiar
measure of dispersion is the variance, already used above, the expected
fluctuation of a random variable about its mean:

=<(z-—<z>)?>.
More generally, define the dispersion of any random variable z as
D¥z)=<a?> .

Thus, 02 = D?(z — < z >).

Sample estimates of quantities like the mean and other properties of ran-
dom variables made from observations occur throughout science. In the
case of the sample mean, it is possible to show without difficulty that the.
expected value of < x > is the true average—that is, << z >y > =< a >.
The interpretation is that for finite IV, we do not expect that the sample
mean will equal the true mean, but that if we could produce sample averages
from distinct groups of observations, the sample averages would themselves
have an average that would fluctuate about the true mean.

The variance of the sample mean (3.2.2) is easily shown to be

D¥<z >y — <<z >N>) = (3.2.6)

=N

and thus the dispersion diminishes with V.

There are many sample estimates, however, some of which we encounter,
where the expected value of the sample estimate is not equal to the true
estimate. Such an estimator is said to be biased. Otherwise, it is unbiased.
The simplest example of a biased estimator is the sample variance if defined
as

E—ZX <z >n)%. (3.2.7)

For simplicity, but without loss of generality, assume the true mean of
z is zero, < > = 0 (a nonzero mean can be removed first if necessary).
Equation (3.2.7) is

1 (X <z >3
2 1 2\ _ N
2oy (3e) =T
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whose expected value is

2
2 2 O oN —1
< 8" >=0, — Fm =0, N )
using (3.2.6) and the zero true mean. Thus, in the definition (3.2.8) the
expected value of the sample variance is not the correct value but is rather
(N — 1)/N times it. To remove the bias, one often redefines the sample

(3.2.8)

variance as

1 N
§2 = ——— > (X;— <z >n)>. (3.2.9)
N -1 i=1

Suppose there are two random variables z, y between which there is
anticipated to be some linear relationship

r=ay+n (3.2.10)

where n represents any contributions to z that remain unknown despite
knowledge of y. Then ‘

<zr>=a<y>+<n>, (3.2.11)
and (3.2.10) shows
z—<z>=aly—<y>)+(n—<n>),
or
g =ay +n', z'=2—<zx>, etc (3.2.12)
From this last equation,

<y > <z'y > <z?>Y2 < g >12

= = =p
< y12 > << y,2 >< w’2 >)1/2 < y/2 >1/2 < yl2 >1/2

(3.2.13)

where it was supposed < y'n’ > = 0, thus defining n. The quantity
<z'y >
(<y?><2?>

p (3.2.14)

)1/2
is the correlation coefficient and is easily shown to have the property |p| < 1.
If p should vanish, then so does a. If a vanishes, then knowledge of 3’ carries
no information about the value of z’. If p = +1, then it follows from the
definitions that n = 0, and knowledge of a permits perfect prediction of z’
from knowledge of ¥’ (because probabilities are being used, rigorous usage
would state “perfect prediction almost always,” but this distinction will be
ignored).
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A measure of how well the prediction of x from y will work can be obtained
in terms of the variance of z’. We have

<z?>=ad<y?>+<n?>=p*<2?>+<n?>

Qr
(1-p%)<a?>=<n?>; (3.2.15)

that is, the fraction of the variance in z’ that is unpredictable by ¥’ is
(1 — p?) < 2'? > and is the unpredictable power. Conversely, p? < z'2 > is
the predictable power. The limits as p — 0, 1 are readily apparent.

Thus, we interpret the statement that two variables z’, 4’ are correlated
or covary to mean that knowledge of one permits at least a partial prediction
of the other, the expected success of the prediction depending upon the size
of p. This result represents an implementation of the statement that if two
variables are not independent, then knowledge of one permits some skill
in the prediction of the other. If two variables do not covary but are also
not independent, a linear model like (3.2.10) would not be useful and some
nonlinear one would be required. Such nonlinear methods are possible and
are touched on briefly later. The idea that correlation or covariance between
various physical quantities carries useful predictive skill between them is an
essential ingredient of many of the methods taken up in this book.

If a sequence of pairs of values z;, y; is measured so that we have a set
of simultaneous equations

ay; +ni = T;, (3.2.16)

we might think to use these equations to determine < 2z >, < y >, a,
< n >, n/, etc. This leads into the huge subject of regression analysis (see,
for example, Seber, 1977; or Draper & Smith, 1982), which is necessary to
understand the connection between the theoretical values of quantities like
< x > and their sample values computed from objects like < z >p. Some
more machinery is required to do so, which we will eventually obtain in
part.

In the absence of other information, the Gaussian, or normal, probability
density is often invoked to describe observations. Apart from its compar-
atively simple mathematical properties, justification for the assumption of
normality lies with the so-called Central Limit Theorem (Cramér, 1946).
This theorem, which can be proven under hypotheses of varying strength, .
shows that under general circumstances, phenomena that are the result of
summing many independent stochastic phenomena will tend toward a nor-
mal distribution. But not all physical phenomena conform to the assump-
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tions of the Central Limit Theorem; in particular, the ocean is demonstrably
nonnormal in many respects, making the Gaussian hypothesis a dangerous
one. Nonetheless, it is worth recalling the fundamental properties of the
normal probability density. For a single variable z, it is defined as

—my)?
pul0) = oo (- B 22

[sometimes abbreviated as G(mg, o). It is readily confirmed that < = >
=my, < (z— < z >)? > = o2. Suppose that z, y are independent Gaussian
variables G(mg, 0g), G(my, oy). Then their joint probability density is just
the product of the two individual densities,

X —my)? Y —my 2
exp <—( 202 F ! 202 )> (3.2.17)

pwy(ny) =

2moLoy

We need to consider the probability density for normal variables that are
correlated. Let two new random variables, &1, &, be defined as a linear
combination of z, y,

1 = a11(z — ma) + a12(y — my) + me,
€2 = a21(z — M) + az2(y — my) + me,
or
£ =A(x—mg) +mg (3.2.18)
where x = {z,y}7, m, = [mg,my]T, mg = [mg,,me,]T. What is the
probability density for these new variables? The general rule for changes of

variable in probability densities follows from area conservation in mapping
from z, y space to &1, &2 space—that is,

= = 90X Y)

Pert,(B1,E2) = P2y (X (B1, 22), Y(:1,:2))8(El =) (3.2.19)

where 0(X,Y)/9(E1, Z2) is the Jacobian of the transformation between the
two variable sets, and the numerical values satisfy the functional relations,

El = all(X - m;,;) + CL12(Y — my) + mél s

etc. Suppose that the relationship (3.2.18) is invertible-that is, we can solve
for

T = 511(51 — mgl) + b12(§2 - m£2) +mg
y = ba1 (€1 — me;) + b2a(§2 — me,) + my
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or

x=B({-—m¢)+m,. (3.2.20)

Then the Jacobian of the transformation is
(X,Y)
a(El) E‘?)

[det(B) is the determinant of B]. Equation (3.2.18) produces

= b11b22 — b12b21 = det(B) (3221)

< §1 > =myg,
<£2 > = myg,
2 _ 2 2 2
<(&— <& >)" > =ai,0; +an20y

< (51— <& >)(§2— <& >)>= allaglai + a12a2205 #£0. (3.2.22)

In the special case,

A:{ cos @ sinqb}, B:{cosqb *sinqﬁ}, (3.2.23)-

—sin¢g cos¢ sin ¢ cos ¢

the transformation (3.2.23) is a simple coordinate rotation through angle ¢,
and the Jacobian is 1. The second-order moments in (3.2.22) then become

< (61— < & >)? >= 02, = cos? po2 +sin® go?, (3.2.24)
< (€a— < &2 >)2 >= 022 = sin? o2 + cos® qﬁag , (3.2.25)
< (&1— <& >)(a— <& >) >= pee, = (05 — 02)cospsing. (3.2.26)

The new probability density is
1

Peres(E1,E2) =
2m0¢, 0¢y4/1 — pg
- 2 _ —_ —_ 2
exp {_ 1 [(:1 - mﬁl) . 2P§(\:1 3 (E2 — mEz) + (B2 — m€2) ]}
2

Ji-a2L o 761 0¢ %,

where pg = (02 —02) sin ¢ cos ¢/ (a¢, + 052)1/2 = l¢, ¢,/ 0¢,0¢, I8 the corre-
lation coefficient of the new variables. A probability density derived through
a linear transformation from two independent variables that are Gaussian
will be said to be jointly Gaussian, and (3.2.27) is a canonical form. Because
a coordinate rotation is invertible, it is important to note that if we had two
random variables £1, &2 that were jointly Gaussian with p # 1, then we could
find a pure rotation (3.2.23), which produces two other variables z, y that

are uncorrelated and therefore independent. Notice that (3.2.26) shows that

X (3.2.27)
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two such uncorrelated variables x, y will necessarily have different variances;
otherwise, &1, €2 would have zero correlation, too.

It follows that two uncorrelated jointly Gaussian random variables are
also independent. This property is one of the reasons Gaussians are so nice
to work with.

3.2.1 Vector Random Processes

Simultaneous discussion of two random processes, z, y can be regarded as
discussion of a vector random process [z, y]T and suggests a generalization
to N dimensions. Let us label N random processes as z(i) and define them
as the elements of a vector xT = [z(1),z(2),... ,:U(N)]T. Then the mean is
a vector: < x > = myg, and the covariance is a matrix:

Cor = D?(x— <x>) =< (x— <x>)(x—<x >)T >, (3.2.28)

which is necessarily symmetric and positive semidefinite. ~The cross-
covariance of two processes X, y is

Coy=< (x—<x>)(y—-<y>)T"> (3.2.29)

and Cgy = CZ;.

It proves convenient to introduce two further moment matrices in addition
to the covariance matrices for which the dispersion is measured about the
mean. The second-moment matrices will be defined as

R,. = D2(x) = < xx? >, R,y =< xyl >

(Roy = R, etc.). Let X be an estimate of the true value, x. Then the dis-
persion of % about the true value will be called the uncertainty (sometimes

it is called the error covariance) and is
P=D*x-x)=<&-x)E-x)T>. (3.2.30)

An intuitively pleasing requirement for an estimator x is that it should
minimize the variance about the true value—that is, minimize the diagonal
elements of P. This choice is an aesthetic one, but it is the one we will use
extensively later.

If there are N variables, &, 1 < 4 < N, they will be said to have an
“N-dimensional jointly normal probability density” if it is of the form

_exp —3(E - m)Tngl(E' — m)

Per,.tn(B1y-- -, EN) =
v (2m)N/2, [det(Ce)

(3.2.31)
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It is readily demonstrated that < & >= m, < (£ — m)(§ — m)T > = Cg,.
Equation (3.2.27) is a special case of (3.2.31) for N = 2.
Positive definite symmetric matrices can be factored as

T/2 ~1/2
called the Cholesky decomposition, where C;? is upper triangular and non-

singular. Numerical schemes for finding Cé/ ? are described by Lawson and
Hanson (1974) and Golub and Van Loan (1989). It follows that the trans-
formation (a rotation and stretching),

x=Cg *(€ —m), (3.2.33)

produces new variables x of zero mean, and identity covariance-that is, a
probability density

1/v2 2
exp—5 (X7 + - X%)
P, on (X1, Xn) = 2 27:)]\,/2 ol (3.2.34)
exp (—%X%) exp (—%ijv)
(QW)I/Z (271.)1/2 )

which factors into N independent, normal variates of zero mean and unit
variance (Czz = Rzz = I). Such a process is often denoted white noise.
(Cramér, 1946, discusses what happens when the determinant of Cg
vanishes—that is, if C¢¢ is singular.)

3.2.2 Functions of Random Variables

If the probability density of z is p,(z), then the mean of a function of z,
g(z) is just

(o]

<glz)> = f 9(X)pe(X)dX (3.2.35)
which follows from the definition of the probability density as the limit of
the outcome of a number of trials. The probability density for g regarded
as a new random variable is given by (3.2.19) as

dx

pg(G) = pz(X(G))d—g (3.2.36)
where the Jacobian is just dz/dg for a one-dimensional transformation.

An important special case is g = x? where x is Gaussian of zero mean and
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2

unit variance (any Gaussian variable z of mean m and variance c“ can be

transformed to one of zero mean and unit variance by the transformation

zZ—m
r = )
o

whose Jacobian is very simple). Then the probability density of g is

1
_ — > .2.37
a probability density usually denoted as x? (chi-squared), and < g > = 1,
D3(g— < g>)=2.

3.2.83 Sums of Random Variables

It is often helpful to be able to compute the probability density of sums of
independent random variables. The procedure for doing so is based upon
(3.2.35). Let z be a random variable, and consider the expected value of
the function ei®t:

ts = / X)X = ¢a(t) (3.2.38)

which is also the Fourier transform of p,(X); ¢5(t) is usually termed the
characteristic function of . Now consider the sum of two independent
random variables z, y with probability densities pg, py, respectively, and
define a new random variable z = z +y. What is the probability density of
2?7 A method for finding it is based upon first determining the characteristic
function, ¢,(t) for z and then using the Fourier inversion theorem to obtain
p(Z). To obtain ¢,

b, (t) = < et > = < TV 5 — < oot S gVl >

where the last step depends upon the independence assumption. This last
equation shows

¢Z (t) = ¢m(t)¢y(t) . (3.2.39)

That is, the characteristic function for a sum of two independent variables
is the product of the characteristic functions. The convolution theorem (see,
for example, Bracewell, 1978) asserts that the Fourier transform (forward or
inverse) of a product of two functions is the convolution of the Fourier trans-
forms of the two functions. We will not explore this relation in any detail,
leaving the reader to pursue the subject in the references (e.g., Cramér,
1946). But it follows immediately that the multiplication of the charac-
teristic functions of a sum of independent Gaussian variables produces a
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new variable, which is also Gaussian, with a mean equal to the sum of the
means and a variance that is the sum of the variances (“sums of Gaussians
are Gaussian”). It also follows immediately from the convolution theorem
that if a variable ¢ is defined as '

E=a24+ 22+ 422 (3.2.40)

where each z; is Gaussian of zero mean and unit variance, the probability
density for £ is
=v/2-1

NG

[1]

e exp(~5/2), (3.2.41)
known as x2, “chi-square with v degrees of freedom.” The chi-square prob-
ability density is central to the discussion of the sizes of vectors, such as
N, measured as i’ = Y ; A7 if the elements of i can be assumed to be
independent and Gaussian. Equation (3.2.37) is the special case v = 1. One
has,

<t>=v, DXt—<E>)=2w. (3.2.42)

3.2.4 Degrees of Freedom

The number of independent variables described by a probability density
is usually called the number of degrees of freedom. Thus, the densities
in (3.2.31) and (3.2.34) have N degrees of freedom, and (3.2.41) has v of
them. If a sample average (3.2.2) is formed, it is said to have N degrees
of freedom if each of the z; is independent. But what if the z; have a
covariance Cg,, that is nondiagonal? This question of how to interpret
averages of correlated variables will be explicitly discussed in Section 3.5.

Consider for the moment only the special case of the sample variance
(3.2.9), with divisor N —1 rather than /N as might be expected. The reason
is that even if the sample values z(i)(= ;) are independent [we are not dis-
tinguishing here between (%) and X (¢)], the presence of the sample average
in the sample variance means that there are only N — 1 independent terms
in the sum. That this is so is most readily seen by examining the two-term
case. Two samples produce a sample mean, < x >2 = (1 + z2)/2. A
two-term sample variance is

s?=1((z1— <z >2)° + (z2— <@ >2)?),

but knowledge of 1 and the sample average permits perfect prediction of
x9 and thus of the second term in the sample variance, and there is just one
independent piece of information in the two-term sample variance.
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3.2.5 Stationarity

Consider a vector random variable with elements z; = z(¢) where the ar-
gument 4 denotes a position in time or space. Then z(4), z(j) denote two
different random variables—for example, the temperature at two different po-
sitions in the ocean, or the temperature at two different times at the same
position. If the physics governing these two different random variables are
independent of the parameter 7 (i.e., independent of time or space), then z(7)
is said to be stationary, meaning that the underlying statistics are indepen-
dent of i. Specifically, < z(i) > = < z(j) > = < = >, D*(z(i)) = D?*(z(5)),
etc. Furthermore, z(2), z(j) have a covariance

Ca::zz(%]) =< (JJ(Z)— < w(l) >)(JJ(])— < IE(]) >) > = C'w.'v(|Z _j|)7
(3.2.43)
that is, independent of ¢, j, and depending only upon the difference |¢ — j|;
|i — j| is often called the lag. Then

< (2(d) — <z >) (@) — <z >)T >={Cau(4,§)} = {Caalli — j])}

is called the autocovariance of x or just the covariance, because we now
regard z(i), z(j) as intrinsically the same process.? If Cy; does not van-
ish, then by the discussion above, knowledge of the numerical value of ()
implies some predictive skill for z(j) and vice versa—a result of great im-
portance when we examine map making and objective analysis. A jointly
normal stationary time series would have probability density (3.2.31) in
which all the elements of m are identical, and the ij-th elements of Cg,
depend only upon i — j.

3.2.6 Maxzimum Likelihood

Given a set of observations with known joint probability density, one can
base a method for estimating various sample parameters upon a principle of
maximum likelihood, which finds those parameters that render the actual
observations to be the most probable ones. Consider one simple example
for an uncorrelated jointly normal stationary time series,

< z(i) > =m, < (z(i) — m)(z(j) — m) > = 025,

2 If the means and variances are independent of %, j and the first cross-moment is depen-
dent only upon |i — j|, the process z is said to be stationary in the wide sense. If all
higher moments also depend only on |i — j|, the process is said to be stationary in the
strict sense, or more simply, just stationary. A Gaussian process has the unusual property
that wide-sense stationarity implies strict-sense stationarity.
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with corresponding joint probability density

pa(e(1)2(2),2(3). - 2(N)) = Gy %

exp (—?ig [(m(l) —m)?+(z(2) — m)’*+-- -+ (z(N) — m)QD . (3.2.44)
Substitution of the observed values into (3.2.44)% permits evaluation of the
probability that these particular values occurred. Denote this probability
as L. One can demand those values of m, o, rendering the probability a
maximum of L for all possible series mean and standard deviations. The
probability can be maximized by minimizing the exponent in (3.2.44)-that
is, minimizing

1 . 2 1 1
logL = 502 Z(:c(z) —m)” — 5N10g(2a$) - §Nlog(27r) ) (3.2.45)

the log-likelihood . function. Maximizing log L with respect to m, o5 pro-
duces ‘

= = ix(i) P=s= L i(x(i) — 1)’ (3.2.46)

- N - ) T - N . ) R
and the result is the usual sample average and the biased estimate of the
sample variance (3.2.7). A likelihood function derived from (3.2.31) provides
a straightforward generalization to covarying variables.

A complete methodology for most of what follows in this book can be
built upon the general ideas of maximum likelihood estimation, but it is
not the course I choose to follow. Extended discussions can be found in
numerous places, including Van Trees (1968), who carries the idea all the
way through the material found here in Chapter 6.

3.3 Least Squares

Much of what follows in this book can be described using very elegant and
powerful mathematical tools. On the other hand, by restricting ourselves
to discrete models and finite numbers of measurements, almost everything
can also be viewed as a form of ordinary least squares. It is thus useful to
go back and review what “everyone knows” about this most-familiar of all
approximation methods.

3 Strictly speaking, we should work with the conditional probability (3.2.3),
—Pajm,o (z(1),2(2) - .. z(N)|m,c).
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Figure 3-2. “Data” gener-
ated through the rule y =1

+ 2t +n, where <n > =0,
< ngn; > = 96;5, denoted by
small dots. Solid line shows a
least-squares fit to the data,
which is §=1.9 £ 0.84(1.96+
0.03)t with < ab > = —0.02;
open circles denote the resid-
uals of the fit, which appear
to be qualitatively white noise
in character.
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3.3.1 Basic Formulation

Consider the elementary problem motivated by the “data” shown in Fig-
ure 3-2; ¢ is supposed to be an independent variable, which could be time,
or a spatial coordinate or just an index. Some physical variable, call it 6(¢),
perhaps temperature at a point in the ocean, has been measured at times
t=t;, 1 <1< M, as depicted in the figure.

We have reason to believe that there is a linear relationship between 6(¢)
and t in the form 6(t) = at + b so that the measurements are

y(t) = 6(t) + n(t) = a + bt + n(t) (3.3.1)

where n(t) is the inevitable measurement noise. We want to determine a, b.
The set of observations can be written in the general standard form,

where in the present special case,

Ex+n=y (3.3.2)

t1 y(t1)

1ty . y(t2)
E={. .\ x= M Coy=| - |, (3.3.3)

tm y(ta)

and n(t) is the noise vector. Equation sets like (3.3.2) appear in many
practical situations, including the ones described in Chapter 2.
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One sometimes sees (3.3.2) written as
Ex~y

or even

Ex=y.

But Equation (3.3.2) is preferable, because it explicitly recognizes that n =
0 is exceptional. Sometimes, by happenstance or arrangement, one finds
that M = N and that E has an inverse. But the obvious solution, x =
E~ly, leads to the conclusion, n = 0, probably regarded as unacceptable if
the y are the result of measurements. We will need to return to this case,
but for now, let us consider the problem where M > N.

Commonly, then, one sees a best possible solution—defined as producing
the smallest possible value of n”'n-that is, the one producing the minimum
of

M M ‘
J = Z(a + bty —y(t;)? = Z n?=nTn=Ex—-y) T (Ex—y). (3.3.4)
i=1 i=1

Differentiating (3.3.4) with respect to a, b or x [using (3.1.17) and (3.1.19)]
and by setting dJ = Y (8J/0z;)dx; = 0, term-by-term (anticipating a
minimum rather than a maximum), leads to the system called the normal
equations,

ETEx =E"y. (3.3.5)
Making the sometimes valid assumption that (ETE)~! exists,
%= (ETE)"'ETy. (3.3.6)

The solution is written as X rather than as x because the relationship be-
tween (3.3.6) and the correct value is not clear. The fit is displayed in
Figure 3-2, as are the residuals,

i=y-Ex=y-EETE)'ETy = I-EE'E)"'E")y. (3.3.7)

That is, the M equations have been used to estimate NN values, Z;, and M
values 7n;, or M + N altogether.

All this is easy and familiar and applies to any set of simultaneous equa-
tions, not just the straight-line example. Before proceeding, let us apply
some of the statistical machinery to understanding (3.3.6). Notice that no
statistics were used in obtaining (3.3.6), but we can nonetheless ask the ex-
tent to which this value for X is affected by the random elements, the noise
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in y. Let yp be the value of y that would be obtained in the hypotheti-
cal situation for which n = 0. Assume further that < n > = 0 and that
R.n = Cpnn = < nn? > is known. Then the expected value of X is

<%>=(ETE) ETyy,. (3.3.8)

If the matrix inverse exists, then in many situations, including the problem
of fitting a straight line to data, perfect observations would produce the
correct answer, and (3.3.6) is an unbiased estimate of the true solution,
< X > = x. On the other hand, if the data were actually produced from
physics governed, for example, by a quadratic rule, 8(t) = a+ct?, then fitting
the linear rule to such observations, even if they are perfect, could never
produce the right answer, and the solution would be biased. An example
of such a fit is shown in Figure 3—4. Such errors are distinguishable from
the noise of observation and are properly labeled model errors. Assume,
however, that the correct model is being used and therefore that < X > = x.
Then the uncertainty of the solution is the same as the variance about the
mean and is

P=Csz=< & -x)(x—x)T >
= (ETE)"'ET < on” > E(ETE)™!
= (ETE)"'E"R,,,E(ETE)" L. (3.3.9)

In the special case, Ry, = o2I-that is, there is no correlation between the
noise in different equations (often called white noise)-then (3.3.9) simplifies
to

P=02(ETE)". (3.3.10)

If we are not confident that < X > = x, (3.3.9)-(3.3.10) are still inter-
pretable but as Cxz = D?(X— < X >) — the covariance of x. The stan-
dard error of %; is usually defined to be £1/Cxx and is used to understand
the adequacy of data for distinguishing different possible estimates of X.
If applied to the straight line fit of Figure 3-2, we obtain an estimate as
xT =[a BT =[1.9£0.8, 1.96 £ 0.03]7. If the noise in y is Gaussian, it
follows that the probability density of X is also Gaussian, with mean < X >
and covariance Czx. Of course, if n is not Gaussian, then neither will be the
estimate, and one must be wary of the accuracy of standard error estimates.
The uncertainty of the residual estimates is

Piz=<(A—n)@-n)T >=(1-EETE)'ET)R,,I - EETE)'ET)"
= ¢2(I- E(ETE)'ET)’ = 62(I1 - E(ETE)'ET) (3.3.11)

n
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where the second line is valid for white-noise residuals, and where <n > =0
is assumed to be correct.

The fit of a straight line to observations demonstrates many of the issues
involved in making inferences from real, noisy data that appear in more
complex situations. In Figure 3-3, the correct model used to generate the
data was the same as in Figure 3-2, but the noise level is very high. The
parameters [d, b] = [1.5 4 2.8, 2.0 & 0.1]-that is, @ is numerically incorrect,
and formally indistinguishable from zero (but consistent within one standard
error with the correct value). One sometimes reads, in such situations,
that “least squares failed,” but such a statement represents a fundamental
confusion of the methodology with the lack of data adequate to demonstrate
a hypothesis. Least squares functions exactly as intended, and one could
conclude legitimately either that (1) there is no evidence that a straight-line
rule explains the data, or (2) the data are consistent with the hypothesis
a =1, b = 2, and there is no reason to change such a prior estimate. In
Figure 3-5, the quadratic model of Figure 3—4 was used to generate the
numbers, but with enough additional data supplied that the residuals now
clearly fail to satisfy a hypothesis of being white noise. Modeling a quadratic
field with a linear model produces a systematic or model error. In contrast,
the fit of a quadratic rule y = a + bt + ct?, shown in Figure 3-6, does leave
small, random appearing residuals. But if the true noise were not random,
one might well erroneously deduce the presence of a quadratic model; such
possibilities strongly suggest that the residuals had better be examined at
least as closely as the model parameter estimates—and the need to do so is
a constant theme in this book.

Visual tests for randomness of residuals have obvious limitations, and
elaborate statistical tests help to determine objectively whether one should
accept or reject the hypothesis that no significant structure remains in a
sequence of numbers. Books on regression analysis (e.g., Seber, 1977, or
Box & Jenkins, 1978) should be consulted for general methodologies. As
an indication of what can be done, Figures 3-7a and b show the sample
autocovariance,

1 M_|T]
Rn(7) = 37 > fiftigr, (3.3.12)
=1

for the residuals of the fits shown in Figures 3-5 and 3-6. [Rpn(7) is
an estimate of < n;n;.r >.] If the residuals were truly uncorrelated,
< figfigr > = 0, 7 # 0, and one expects R, () to approach a delta
function at 7 = 0. Tests are available to determine if the nonzero values
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Figure 3—3. The same situa-
tion as described in Figure
3-2 except <n > =0,

< nn; > = 100%4;;, meaning
the “data” were very noisy.
The fit is now

§=1.5+2.75+ (2.02+0.09)¢.

Figure 3—4. Here, the
“data” were generated
through a quadratic rule,
y=14+t24+n,<n>=0,
< nin; > = 100%5;;. But a
linear fit was nonetheless
made that produces

y=—194+1.6+ (46.4+0.1)t.

To the eye, at least, it is a
reasonably good fit, and one
might have great difficulty in
rejecting the hypothesis that
a straight-line rule is valid.
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for 7 # 0 are significantly nonzero (Box & Jenkins, 1978, Ch. 2). Here, we
merely note that the sample autocovariance behavior again confirms visu-
ally what we already know-that the fit in Figure 3-6 is adequate, and in

Figure 3-5 it is not.

3.3.2 Weighted and Tapered Least Squares

The least-squares solution (3.3.6)—(3.3.7) was derived by minimizing the
objective function (3.3.4), in which each residual element is given equal



Figure 3—5. The same situa-
tion as in Figure 3-4 except
that the duration was ex-
tended. Now the linear fit
leaves obvious residuals that
are nonrandom, producing a
strong indication that a linear
model is inadequate, or that
the noise is not white, or
both.

Figure 3—6. The same situa-
tion as in Figure 3-5 except
that now a quadratic model,
y = a+ bt + ct?, was fit,
resulting in a solution y =
—245.2+ (026 £4.7)t+
(2.0 £ 3.9)t? and leaving
small, apparently random,
residuals.
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weight. An important feature of least squares is that we can give whatever
emphasis we please to minimizing individual equation residuals, for example,

by introducing an objective function

(3.3.13)

where W;; are any numbers desired. The choice W;; = 1 might be reason-
able, but it is clearly an arbitrary one that without further justification does
not produce a solution with any special claim to significance. In the least
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Figure 3-5, the autocovar-
iance of a non-white process.
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squares context, we are free to make any other reasonable choice, 1nc1ud1ng
demanding that some residuals should be much larger than others, perhaps
just to determine if it is possible.

A general formalism is obtained by defining a diagonal weight matrix,
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W = diag([W;;]).# Divide each equation in (3.3.2) by v/Wii,

WJI/Z Z Eijz; + Wizl/Zni = Wi;’l/zyi (3.3.14)
j
or
Ex+n =y
E =WTTRE n =W T/?n, y =W T/2y (3.3.15)

where we used the fact that the square root of a diagonal matrix is its
element-by-element square roots. Such a matrix is its own transpose, and
the purpose of writing W~7/2 will become clear below. The operation
in (3.3.14) or (3.3.15) is usually called row scaling because it operates on
the rows of E (as well as on n, y). \

For the new equations (3.3.15), the objective function

J=0Tn' = (y —Ex)T(y -Ex) =n"Wln=(y- Ex)TW~!(y — Ex)
: (3.3.16).

weights the residuals as desired. If for some reason, W is nondiagonal but.

symmetric and positive-definite, then it has a Cholesky decomposition,

W = WT/2W1/2 ,

and (3.3.15) remains useful more generally.
The values X, fi, minimizing (3.3.16), are

% = (E/TEI)—lE/Ty/ - (ETW—lE)—lETW—ly
— W' = {I-EE"WE)'ETW 1}y (3317)

=

and
P =C;z; = (ETW 'E)'ETW™IR,,,WIE(ETWE)'. (3.3.18)

Uniform diagonal weights are a special case. The rationale for choosing
differing diagonal weights or a nondiagonal W is probably not very obvious
to the reader. There is one common situation in which W = R,,, =
{ < nin; > }, that is, the weight matrix is chosen to be the expected
second-moment matrix of the residuals. Then (3.3.18) simplifies to

P =Cz = (ETR,E)"'. (3.3.19)

Here, the weighting (3.3.15) has a ready interpretation: The equations (and
hence the residuals) are rotated and stretched so that in the new coordinate

4 If q is a vector, the operator diag(q) forms a square diagonal matrix, whose elements
are g¢;.
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system, the covariance of n; is diagonal and the variances < n? > are all
unity. In this space, the simple, original objective functions (3.3.4) make
physical sense. But we emphasize that this choice of W is a very special one
and has confused many users of inverse methods. To emphasize again: Least
squares is a deterministic process in which W is a set of weights wholly at
the disposal of the investigator; setting W = R,,,, is a special case.®

If it is intended that W should reflect the actual expected noise variance,
one should confirm after the fact that substitution of X into (3.3.16) produces
a value of J consistent with the hypothesis. That is, because

M
<J>=<n"Rin>=) <nl>=M-K, (3.3.20)
1

one should obtain (3.2.42),
J=aTRhi~M-K. : (3.3.21)

M — K degrees of freedom (here, K = N) are anticipated because-the
residuals are not independent but are related by (3.3.7). [That there are N
degrees of freedom removed by (3.3.7) becomes obvious later on.] The degree
of approximation required to J = M — K is then readily determined from
X%VI— k> assuming the 7; are approximately Gaussian. As an illustration,
30 equations in 15 unknowns were constructed for which (ETE)~! existed.
Then with x known, an ensemble of 50 values of y was generated by forming

y=Ex+n

and by generating n with a pseudorandom number generator. The system
of equations was solved for X by Equation (3.3.6), producing 50 different
estimates of both X, n and the resulting value of J formed for each and
plotted in Figure 3-8a. By expression (3.3.20) we would expect the mean
value of J to be near 15, as the figure suggests is approximately correct.
Figure 3-8b shows the empirical frequency function of J as compared to
X35. The study of the deviations between the expected and computed dis-
tributions is the basis of hypothesis testing for the validity of the results,
but we leave this discussion to the large literature on the subject. Similarly,
the individual elements whose sum is J should have a probability density
consistent with x?.

Whether the equations are scaled or not, the previous limitations of the

5 In maximum likelihood estimation, least-squares is used to find the likelihood function
extreme, and W = R, , emerges as a natural choice (e.g., Cramér, 1946; Van Trees,
1968). But the logic of this process is distinct from least-squares as we are employing it
here.
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30

p7 L I | E— f R S A S

Figure 3—8a. Example in
which a system of 30 equa-
tions in 15 unknowns was
solved for 50 different noise S ISR SO WY SN ! SRS I S——— :
realizations in y, showing the
different values of J [equation
(3.3.20)] for each resulting
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values of J shown in Fig- 0
ure 3-8a, compared to the
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simple least-squares solutions remain. In particular, we still have the prob-
lem that the solution may produce solution elements X, n, whose relative
values are not in accord with expected or reasonable behavior, and the so-
lution uncertainty or variances could be unusably large. These quantities
are all determined, mechanically and automatically, from combinations such
as (ETW1E)~!, an operator that is neither controllable nor very easy to
understand and that may not even exist if the matrix is singular.
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Suppose, without loss of generality, that any necessary weight matrix W
has already been applied to the equations so that (3.3.4) is a reasonable
objective function. It was long ago recognized that some control over the
magnitudes of X, i, Czz could be obtained in the simple least-squares con-
text by modifying the objective function (3.3.4) to have an additional term:

J' =nTn+ o*Tx = (y — Ex)T(y — Ex) + o’x"x (3.3.22)

in which o? is a given positive constant.
If the minimum of (3.3.22) is sought by setting to zero the derivatives
with respect to x, the resulting normal equations produce .

= (ETE + o*1)7'ETy (3.3.23)
={1-EE"E+ o*) BT}y (3.3.24)
Ci; = (ETE + 1) 'ETR,,,E(ETE + o’I) ™! (3.3.25)
Pan = {I —~E(ETE + azl)_lET} R, X ‘

M

=}

{I-EE"E+ aZI)_lET}_l . (3.3.26)

By letting a® — 0, the solution (3.3.6)—(3.3.7), (3.3.9) is recovered, and if
a? = oo, |X]]2 = 0, 1 =y, a? is called a trade-off parameter, because it
trades the magnitude of X against that of . By varying the size of a?, we
gain some influence over the norm of the residuals relative to that of x. The
expected value of X is now

<%>=(ETE +*1)"'ETy,. (3.3.27)

If the true solution is believed to be (3.3.8), then this new solution is biased.
But the variance of % (3.3.25) has been reduced by introduction of o > 0~
that is, the acceptance of a bias reduces the variance. Equations (3.3.23)—
(3.3.26) are sometimes known as the tapered least-squares solution, a label
whose implication becomes clear later.

A physical motivation for the modified objective function (3.3.22) is ob-
tained by noticing that it would be the simplest one to use if the equations
being solved consisted of (3.3.2), augmented with a second set asserting
x ~ 0-that is, a combined set

Ex4+n=y
o?(x4+n1) =0
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or

Eix+ny=y>

E
E, = {agl}, n; =" o’nf], y3 =[y" 07], (3.3.28)

and in which o? expresses a preference for fitting the first or second sets
more accurately. It then comes as no surprise that the solution covariance
depends upon the relative weight given to the second set of equations. A
preference that x &~ xq is readily imposed instead, with an obvious change
in (3.3.22).

Note the important points, to be shown later, that the matrix inverses
in (3.3.23)—(3.3.26) will always exist as long as @? > 0 and, furthermore,
that the expressions remain valid even if M < N.

Tapered least squares produce some control over the sum of squares of the
relative norms of X, fn but still does not produce control over the individual
elements Z;. In analogy to the control of the elements of n; obtained by-
using a weight matrix W, we can further generalize the objective function
by introducing another N x N weight matrix, S, and using

J=nTn+xTS'x = (y - Ex)T(y — Ex) + xT S x. (3.3.29)

Setting the derivatives with respect to x to zero results in

x=(EBTE+s 1) ETy (3.3.30)
i={I-EE"E+s ) 'ET}y (3.3.31)
Cs: = (BETE+S™1)'ETR,,E(ETE+S™)™.  (3.3.32)

The only restriction is that the matrix inverses must exist. Tapered least
squares is a special case in which S™! = oI, and plain least squares
further sets a2 = 0. Like W, S is often diagonal, in which the numerical
values simply assert a preference for making individual terms of Z; large or
small.

Suppose that S is positive definite and symmetric and thus has a Cholesky
decomposition. If the equations are scaled as (sometimes called column
scaling because it weights the columns of E),
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EST/28 T/2x 4 n = y
Ex'+n=y

E =EST/2, x' =8"T/%, (3.3.33)

then the objective function (3.3.22), with o2 = 1, is a plausible one in the

new coordinate system of x’. Like W, one is completely free to choose S as
one pleases. A common example is to write S = FTF, where F is N x N,

1 -1 0 --- 0
o 1 -1 --- 0

F=a{. . : S (3.3.34)
0 - .- 0 1

whose effect is to minimize a term o? ", (z; — z;11)?, which can be regarded
as a smoothest solution, and using o to trade smoothness against the size
of [n]j2. aF is the Cholesky decomposition of S. Another common choice is
S = R,,—that is, the second moments of the solution where known. In this
special situation, the z; would be uncorrelated with unit variance. Usually
it is assumed that both row and column scaling have been done:

W-T/2EST/2§-T/2% 4+ W—T/2p — w-T/2y

Elxl + nl — y/
EI — W_T/ZEST/Z, xl — S—T/2x’ nl — W—T/Zn, yI — W_T/zy,
(3.3.35)
at which point the plain objective function
J=nTn +xTx' (3.3.36)

is used (o has been absorbed into S, but it is often convenient to carry it
as a separate parameter). If the primes are dropped, Equations (3.3.23)-
(3.3.26) result, with o = 1. If the original variables E, x, n, y are restored,
we obtain the most general row- and column-scaled form, which is, for future
reference,
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=W ln+xTS7!x (3.3.37)
%= ETWIE+Ss ) 'ETWly (3.3.38)
={ EETWE +8s ) IETW}y (3.3.39)

;= (ETWTIE+S ) T'ETW 'R, X
W IEETWE +$71)™! (3.3.40)

-1
Pis = {I-BEWE+S )T ETW '} Ry x

T
{I-EE"W'E+ sTHETW} (3.3.41)

So far, all of this is conventional. But we have made a special point of
displaying explicitly not only the elements X but those of the residuals n
Notice that although we have considered only the formally overdetermined
system, M > N, we always determine not only the N elements of x but also
the M elements of f, for a total of M + N values, extracted from the M ‘
equations. It is apparent that any change in any element n; forces changes
in %. In this view, to which we adhere, systems of equations involving obser-
vations always contain more unknowns than knowns. There is compelling
reason, therefore, to rewrite (3.3.2) as

E£=y

E.={E Iy}, ¢T=[x n]", (3.3.42)

which is to be solved exactly, as an underdetermined system. That even
overdetermined observed systems are of necessity actually underdetermined,
leads to taking a first look at formal underdetermination.

3.3.8 Undetermined Systems—A First Discussion

What does one do when the number of equations is less than the number
of unknowns, and no more observations are possible? One often attempts
in such a situation to reduce the number of unknowns so that the formal
overdeterminism is restored. Such a parameter reduction procedure may be
sensible, but there are pitfalls. Consider data produced from a law

y=1+ayt™ +n(t), (3.3.43)
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which might be deduced by fitting a parameter set [ao,...,a M. If there
are fewer than M observations, an attempt to fit with fewer parameters,

Q
y=Y at’, Q<M, (3.3.44)
=0

may give a good, even perfect fit, but it would be wrong. The reduction in
model parameters in such a case biases the result. One is better off retaining
the underdetermined system and making inferences concerning the possible
values of a; rather than using the form (3.3.44), in which any possibility of
learning something about aps has been eliminated.

In more general terms (discussed by Wunsch & Minster, 1982), param-
eter reduction can lead to model errors or biases that can produce wholly
illusory results. A specific example was provided by Wunsch (1988a); a
two-dimensional ocean circulation model was used to calculate values for
the apparent oxygen utilization rate (AOUR). But when the parameteri-
zation was made more realistic (a three-dimensional model), it was found
that AOUR was indeterminate to within any useful range. The conclusions
from the underparameterized model are erroneous; the second model pro-
duces the useful information that the database was inadequate to estimate
AOUR, and one avoids drawing incorrect conclusions.

Another example is Munk’s (1966) well-known discussion of the property
fields of the abyssal Pacific Ocean (see Figure 4-29). He fit the observations
to the solutions of one-dimensional vertical balance equations

oC 0%*C

Yoz " oz2

where C is temperature, salinity, or radiocarbon for the vertical velocity w
and vertical mixing coefficient . The fit was quite good and has been cher-
ished by a generation of chemical oceanographers as showing that the ocean

= sinks (3.3.45)

is one-dimensional and steady. But such an ocean circulation is impossible,
and one is misled by the good fit of an underpararﬁeterized model.

A general approach to solving underdetermined problems is to render
them unique by minimizing an objective function, subject to satisfaction
of the linear constraints. To see how this can work, suppose that (3.3.2)
are indeed formally underdetermined—that is, M < N-and seek the solution
that exactly satisfies the equations and simultaneously renders the objective
function, J = xTx, as small as possible. Direct minimization of J leads to

oJ

T
—_ . e T —
dJ = (8){) dx =2x"dx =0, (3.3.46)
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but the coefficients of the individual dz; can no longer be separately set to
zero (i.e., x = 0 is incorrect) because the dz; no longer vary independently
but are restricted to values satisfying Ex = y. One approach is to use
the known dependencies to reduce the problem to a new one in which the
differentials are independent. For example, suppose that there are general
functional relationships

z1 L x4ty ,TN)

zr €r(zr41,--5TN)

Then the first L elements of z; may be eliminated, and the cost function
becomes

J=E 4t otttk

in which the remaining z;, L + 1 < i < N are independently varying. But
an explicit solution for L elements of x in terms of the remaining ones may
be difficult to find. ‘

When it is inconvenient to find such an explicit representation eliminat-
ing some variables in favor of others, a standard procedure for finding the
constrained minimum is to introduce a new vector Lagrange multiplier, p,
of M unknown elements, to make a new objective function

J =J-2uT(Ex-y)=xTx - 2uT (Ex - y) (3.3.47)

and ask for its stationary point, treating both p and x as independently
varying unknowns. The numerical 2 is introduced solely for notational tidi-
ness. The rationale for this procedure is straightforward (e.g., Morse &
Feshbach, 1953, p. 238; Strang, 1986): Ex = y requires that

Edx = e1dz1 +exdzos + -+ endry =0

where the e; are the column vectors of E. A constant, —2u”, times this
last expression can be added to dJ = 0 so that

dJ dJ
dJ — 2uTEdx = (6—35'1 — 2,LTe1> dzry + (5:72 — 2p,Te2> dzoy + -
+ (-‘?J— — QuTeN> dey =0. (3.3.48)
oxn

In this form, there are M elements of p that can be used to set any M of the
coefficients of the dz; to zero, leaving coefficients of N — M of the remaining
dz;, which can be treated as independent variables. If the objective function
J' is differentiated with respect to p, x and is set to zero, it is readily found
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that the result is a set of simultaneous equations equivalent to the vanishing
of each coefficient in (3.3.48), plus the model. With (3.3.47), this recipe
produces

o.J'
J' |

where the first of these are just the original equations and the second are
the coefficients in (3.3.48) whose solution must therefore be equivalent to
setting the individual terms of (3.3.48) to zero as required, subject to the
model. Because the original equations emerge, the second term of J' will
vanish at the stationary point. The convenience of being able to treat all the
; as independently varying is offset by the increase in problem dimensions
by the introduction of the unknown ;.
Equation (3.3.50) gives

Efp=x, (3.3.51)

and substituting for x into (3.3.49),

EE"p=y,
= (EE) 1y, (3.3.52)
assuming the inverse exists, and

% =ET(EET)y (3.3.53)
n=0 (3.3.54)
Czz =0 (3.3.55)

(Czz = 0 because formally we estimate i = 0).

Equations (3.3.51) for p in terms of x involves the coefficient matrix ET.
An intimate connection exists between matrix transposes and adjoints of
differential equations (see especially, Lanczos, 1961; or Morse & Feshbach,
1953), and thus p is sometimes called the adjoint solution, with ET being
the adjoint model.5 The original Equations (3.3.2) were assumed formally
underdetermined, and thus the adjoint model equations in (3.3.51) are nec-
essarily formally overdetermined. The physical interpretation of p comes
from the result

!
%J; _ 2p; (3.3.56)

6 Byt the matrix transpose should not be confused with the adjoint matrix, which is quite
different.
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the Lagrange multipliers represent the sensitivity of the minimum of J' to
the perturbations in the data y.

Equation (3.3.53) is the classical solution of minimum norm of x, satis-
fying the constraints exactly while minimizing the solution length. That a
minimum is achieved can be verified by evaluating the second derivatives
of J' at the solution point. The minimum occurs at a saddle point in x, p
space (see Sewell, 1987, for an interesting discussion) and where the term
proportional to p necessarily vanishes. The operator ET(EET)~! is some-
times called a Moore-Penrose inverse.

If the Equations (3.3.2) are first column-scaled using S—T/2 Equa-
tions (3.3.53)—(3.3.55) are in the primed variables, the solution in the orig-
inal variables is

% = SET(ESET) "y (3.3.57)
=0 (3.3.58)
Csz =0, (3.3.59)

and the result depends directly upon S. If a row-scaling with wW-T/2 ig
used, it is readily shown that W disappears from the solution and has no
effect on it. Equations (3.3.57)—(3.3.59) are a valid solution, but there is a
potentially fatal defect—i = 0 is rarely acceptable when y are observations.
Furthermore, ||X|| is again uncontrolled, and ETE may not have an inverse.

We have been emphasizing that n must be regarded as fully an element
of the solution, as much as x, that equations representing observations can
always be written as (3.3.42) and can be solved exactly. Therefore, we use
a modified objective function

J=a’xTx +nTn—-2uT (Ex+n—-y), (3.3.60)

with both x, n appearing in the objective function. Setting the derivatives
of (3.3.60) with respect to x, n, p to zero, and solving the resulting normal
equations produces
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% =ET(EET +’T)" 'y (3.3.61)

i = {I- EE"(BE” + o’I)7'}y (3.3.62)
Css = ET(BET + o’T) 'R, (EET + o°’T)7'E (3.3.63)

p=n (3.3.64)
P;s = {1- EE"(EE" + o?1) ™} R

{I -~ EET(EE” + a2I)_1} , (3.3.65)

and as before, we could employ a? as a means to control the relative norms
of X, n and the elements of Cz;. If we suppose that weights wT/2 gT/2
were applied to the equations prior to forming J, then the solution (3.3.61)-
(3.3.65) is in the primed variables, and in terms of the original variables is

% = SET(ESET + W) 'y (3.3.66)

i = {I- ESE"(ESE” + W)}y (3.3.67)

Czz = SET(ESET + W)™ R,,,(ESE” + W)"'ES  (3.3.68)

p=wWT24 (3.3.69)
Pin = {I — ESET(ESET + W)‘l} R, X

{1- ESE(ESE” + W)}, (3.3.70)

with o absorbed into S. Despite the different form, we claim that (3.3.66)—
(3.3.68) are identical to (3.3.38)—(3.3.41)-their identity is readily shown by
using the matrix inversion lemma in the form (3.1.25). A choice between the
two forms is often made on the basis of the dimensionality of the matrices
being inverted: ETW~!E is N x N and ESET is M x M. But even this
criterion is ambiguous, for example, because W is M x M, and if it is not
actually diagonal, or its inverse otherwise known, one would have to invert
it.

Equations (3.3.38)—(3.3.40) and (3.3.66)—(3.3.70) result from two very dif-
ferent appearing objective functions—one in which the equations are imposed
in the mean square (3.3.38)—(3.3.40), and one in which they are imposed
exactly (3.3.66)—(3.3.70), using Lagrange multipliers. In the terminology of
Sasaki (1970) and others, exact relationships are called strong constraints,
and those imposed in the mean-square are weak ones. A preferable termi-
nology, which we will sometimes use, is hard and soft constraints. But in the
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present situation in particular, the distinction is illusory: Although (3.3.2)
are being imposed exactly, it is only the presence of the error term, n, that
permits the equations to be written as equalities and thus as hard con-
straints. The hard and soft constraints here produce an identical solution.
In some circumstances, which we will discuss briefly below, one may wish
to impose exact constraints upon the elements of #;; these are often model
constraints, for example, that the flow should be exactly geostrophic. But it
is actually rare that one’s models are exactly correct, and even geostrophy
is always violated slightly. The solution (3.3.53)—(3.3.55) was derived from
a true hard constraint, Ex = y, but we ended by rejecting it as generally
inapplicable.

It should be ever more clear that n is only by convention discussed sepa-
rately from x and is fully a part of the solution. The combined form (3.3.42),
which literally treats x, n as the solution, is imposed through a hard con-
straint on the objective function,

¢

J=¢T¢ - 2uT(E L€ —y1), (3.3.71)

which is (3.3.60) with a? = 1. (There are numerical advantages, however,
in working with objects in two spaces of dimensions M and N rather than
a single space of dimension M + N.)

3.4 The Singular Vector Expansion

Least squares is a very powerful, very useful method for finding solutions of
linear simultaneous equations of any dimensionality, and one might wonder
why it is necessary to discuss any other form of solution. But in the simplest
form of least squares, the solution is dependent upon the existence of inverses
of ETE, or EET. In practice, their existence cannot be guaranteed, and we
need to understand first what that means, the extent to which solutions can
be found when the inverses do not exist, and the effect of introducing weight
matrices W, S. This problem is intimately related to the issue of controlling
solution and residual norms. Second, the relationship between the equations
and the solutions is somewhat impenetrable, in the sense that structures in
the solutions are not easily related to particular elements of the data y;. For
many purposes, particularly physical insight, understanding the structure
of the solution is essential.
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3.4.1 Simple Vector Exzpansions

Consider again the elementary problem (3.1.1) of representing an
I-dimensional vector f as a sum of a complete set of L-orthonormal vectors
g, 1<1< L, gl'g; = 6;;. Without error,

L
f= Z a;jgj, aj = g?f. (3.4.1)

Jj=1

But if for some reason only the first K coefficients a; are known, we can
only approximate f by its first K terms:

5 K
f =~ Z a;g;j
j=1
— £+ 6, (3.4.2)

and there is an error, 6f;. From the orthogonality of the g;, it follows that
6f; will have minimum /2 norm if and only if it is orthogonal to the K vectors
retained in the approximation, and if and only if a; are given by (3.4.1).
The only way the error could be reduced is by increasing K.

Define an I x K matrix Gg whose columns are the first K of the g;.
Then a = G%ﬂ(f is the vector of coefficients a; = g?f , 1 <j <K, and the
finite representation (3.4.2) is (one should write it out)

f— Gra= Gr(GLf) = (GKkGE)E, a={ai} (3.4.3)

where the third equality follows from the associative properties of matrix
multiplication. This expression shows that a representation of a vector in
an incomplete orthonormal set produces a resulting approzimation that is
a simple linear combination of the elements of the correct values (i.e., a
weighted average, or filtered version of them).

Because the columns of G are orthonormal, GTI;G x = Ix—that is, the
K x K identity matrix; but GKGf{ # 1y unless K =L (that GLGE =1z
for K = L follows from the theorem for square matrices, which show a left
inverse is also a right inverse; see any book on linear algebra). If K < L,
G g is semi-orthogonal. If K = L, it is orthogonal; in this case, Gzl = GCE.
If it is only semi-orthogonal, G%} is a left inverse but not a right inverse.

G KG?{ is known as a resolution matriz, with a simple interpretation.
Suppose the true value of f were

fjoz[ooo...o10.0..o]T,

that is, a Kronecker delta with unity in element jo. Then the incomplete
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Figure 3-9. Incomplete vec- non-compact resolution
tor expansions produce solu- ‘

tions that are linear combina-
tions of the elements of cor- | T
rect ones. One can distinguish

compact resolution where the compact resolution

linear combinations are a sim- ‘

ple neighborhood weighted L [

average (where neighborhood

has a physical interpretation distant elements (although perties). The figure shows,

in time or space) from non- they are typically close in schematically, how the
compact resolution where the  some other space, e.g., as weights differ in the two cases.

averaging involves physically measured in water mass pro-

expansion (3.4.2) or (3.4.3) would not reproduce the delta function but
rather
fj, = GkGLEj,, (3.4.4)

«

which is row (or column, because it is symmetric) jo of GxGF%. The jo-th
row of the resolution matrix tells one what the corresponding form of the
vector would be if its true form were a delta function at position jg.

To form a Kronecker delta function requires a complete set of vectors.
An analogous elementary result of Fourier analysis shows that a Dirac delta
function demands contributions from all frequencies to arrange for a narrow,
very high pulse. Removal of some of the requisite vectors (sinusoids) pro-
duces broadening and sidelobes. Here, depending upon the precise structure
of the g;, the broadening and sidelobes can be complicated. If one is lucky,
the effect could be a simple broadening (schematically shown in Figure 3-9)
without distant sidelobes (Wiggins, 1972, who has a good discussion, calls
this compact resolution), leading to the tidy interpretation of the result as
a local average of the true values.

A resolution matrix has the property

trace(GxGL) = K, (3.4.5)
which follows from noting that
trace(GLGx) = trace(Ix) = K,
and by direct evaluation,
trace(G g GL) = trace(GLGk) -

Orthogonal vector expansions are particularly simple to use and inter-
pret, but their relevance to solving a set of simultaneous equations may
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be obscure. What we will show, however, is that we can always find sets
of orthonormal vectors to simplify greatly the job of solving simultaneous
equations. To do so, we digress to recall the basic elements of the eigenvec-
tor /eigenvalue problem. ‘

Consider a square, M x M matrix E and the simultaneous equations

that is, the problem of finding a set of vectors g; whose dot products with
the rows of E are proportional to themselves. Such vectors are eigenvec-
tors, and the constants of proportionality are the eigenvalues. Under special
circumstances, the eigenvectors form an orthonormal spanning set. Text-
books show that if E is square and symmetric, such a result is guaranteed.
Suppose for the moment that we have such a special case, and recall how
eigenvectors can be used to solve (3.1.10). With an orthonormal, spanning
set, both the known y and the unknown x can be written as

M

X= Z o8, O = g;TFX, (3.4.7)
i=1
M

y= Zﬂigi, Bi=gly- (3.4.8)
i=1

By convention, y is known, and therefore the 3; can be regarded as given.
If we could find the o;, x would be known.
Substitute (3.4.7) into (3.1.10), and using the eigenvector property,

Ezaﬁgz—zzl( y) &

M M
Soidigi =Y (g?y) 8- (3.4.9)
=1 A

But the expansion vectors are orthonormal, and so

Aio; = g1y (3.4.10)
T
gy

i= A4.11

a ;Y (3.4.11)
N gly

X = E ;\ g (3.4.12)
i=1 4

Apart from an evident difficulty if any eigenvalue vanishes, the problem is
now completely solved. If we define a diagonal matrix, A, with elements,



3.4 The Singular Vector Expansion 137

X;, ordered by convention in descending numerical value, and the matrix
G, whose columns are the corresponding g; in the same order, the solution
to (3.1.10) can be written [from (3.4.7), (3.4.10)—(3.4.12)] as

a=A"1GTy (3.4.13)
x=GA Gy (3.4.14)

where A= = diag(1/\;).

Vanishing eigenvalues, ¢ = ig, cause trouble, and we must consider them.
Let the corresponding eigenvectors be g;,. Then any part of the solution
that is proportional to such an eigenvector is annihilated by E-that is, g;, is
orthogonal to all the rows of E. Such a result means that there is no possi-
bility that anything in y could provide any information about the coefficient
;- If y corresponds to a set of observations (data), then E represents the
connection (mapping) between system unknowns and observations. The ex-
istence of zero eigenvalues shows that the act of observation of x removes
certain structures in the solution that are then indeterminate. Vectors g;;
(and there may be many of them) are said to lie in the nullspace of E. Eigen-
vectors corresponding to nonzero eigenvalues lie in its range. The simplest
example is given by the observations

z1+x2 =3,
1+ 20 =3.
Any structure in x such that z; = —zg is destroyed by this observation,
and by inspection, the nullspace vector must be go = [I  — 1]T/+/2 (the
purpose of showing the observation twice is to produce an E that is square).
Suppose there are K < M nonzero ;. Then for i > K, Equation (3.4.10)
is
0o; =gly, K+1<i<M, (3.4.15)
and two cases must be distinguished.
Case (1):
gly=0, K+1<i<M. (3.4.16)
We could then put a; =0, K +1 < i < M, and the solution can be written
T

K

< g Y

x=) Yy, (3.4.17)
i=1 ¢

and Ex = y, ezactly. We have put a tilde over x because a solution of the
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form
K gTy M
=3 g+ ), s (3.4.18)
i=1 7 i=K+1

with the remaining o; taking on arbitrary values, also satisfies the equations
exactly. That is to say, the true value of x could contain structures pro-
portional to the nullspace vectors of E, but the equations (3.1.10) neither
require their presence nor provide the information necessary to determine
their amplitudes. We thus have a situation with a solution nullspace. If the
matrix G is M x K, carrying only the first K of the g;—that is, the range
vectors—Ag is K x K with only the first K, nonzero eigenvalues, and the
columns of Q¢ are the M-K nullspace vectors [it is M x (M — K], then
the solutions (3.4.17) and (3.4.18) are

= GgAZ'GLy, (3.4.19)

M

% = Gg AR 'Ggy + Qcac (3.4.20)

where ag is the vector of unknown nullspace coefficients, respectively.
Equation (3.4.16) is often known as a solvability condition. The solu-
tion (3.4.19) with no nullspace contribution will be called the particular
solution.

If G is written as a partitioned matrix,

G={Gx Qc},
it follows from the column orthonormality that
GGT =1, = Gk GL + QeQ% (3.4.21)
or
QeQ% =1L — GkGi . (3.4.22)
Case (2):
gly#0, i>K, (3.4.23)

for one or more of the nullspace vectors. In this case, Equation (3.4.10) is
the contradiction

Oa; #0,

and Equation (3.4.9) is actually

K M
Z Aiqig; = Z(g?y)gi, K<M, (3.4.24)
=1 i=1
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that is, with differing upper limits on the sums. Owing to the orthonor-
mality of the g;, there is no choice of a;, 1 < i < K on the left that can
match the last M-K terms on the right. Evidently there is no solution in
the conventional sense unless (3.4.16) is satisfied, hence the name solvabil-
ity condition. What is the best we might do? Define best to mean that the
solution % should be chosen such that

Ex=y

where the difference, i = y—¥, which we call the residual, should be as small
as possible (in the l2 norm). If this choice is made, then the orthogonality of
the g; shows immediately that the best choice is still (3.4.11),1 <4 < K. No
choice of nullspace vector coefficients, nor any other value of the coefficients
of the range vectors, can reduce the norm of n. The best solution is then
also (3.4.17) or (3.4.19).

In this situation, we are no longer solving the equations (3.1.10) but rather
are dealing with a set that could be written

Ex ~y (3.4.25)

where the demand is for a solution that is the best possible, in the sense
just defined. Such statements of approximation are awkward, and it is more
useful to always rewrite (3.4.25) as

Ex+n=y (3.4.26)

where n is the residual. If X is given by (3.4.18), then
M
n= 3 (g/ye (3.4.27)
i=K+1

by (3.4.24). Notice that A7y = 0.

This situation, where we started with M equations in M unknowns, but
found in practice that some structures of the solution could not actually be
determined, is labeled formally just-determined, where the word formally
alludes to the fact that the mere appearance of a just-determined system
did not mean that the characterization was true in practice. One or more
vanishing eigenvalues means that the rows and columns E are not spanning
sets.

Some decision has to be made about the coefficients of the nullspace vec-
tors in (3.4.18) or (3.4.20). We could use the form as it stands, regarding
it as the general solution. The analogy with the solution of differential
equations should be apparent—typically, such equations have particular and
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homogeneous solutions. In the present case, the homogeneous solution cor-
responds to the nullspace vectors. When solving a differential equation,
determination of the magnitude of the homogeneous solution requires addi-
tional information, often provided by boundary or initial conditions; here,
additional information is also necessary but is missing. Despite the pres-
ence of indeterminate elements in the solution, we know exactly what they
are: proportional to the nullspace vectors. Depending upon the specific sit-
uation, we might conceivably be in a position to obtain more observations
and would seriously consider observational strategies directed at detecting
these missing structures. The reader is also reminded of the discussion of
the Neumann problem in Section 1.3.

Another approach is to define a simplest solution, appealing to what
is usually known as Occam’s Razor, or the principal of parsimony, that in
choosing between multiple explanations of a given phenomenon, the simplest
one is usually the best. What is simplest can be debated, but here there
is a compelling choice: The solution (3.4.17) or (3.4.19)-that is, without
any nullspace contributions, is less structured than any other solution. [It
is often but not always (again, recall the Neumann problem) true that the
nullspace vectors are more “wiggily” than those in the range. In any case,
including any vector not required by the data is arguably producing more
structure than is required.] Setting all the unknown a; to zero is thus
one choice. It follows from the orthogonality of the g; that this particular
solution is also the one of minimum solution norm. Later, we will see some
other choices for the nullspace vectors.

If the nullspace vector contributions are set to zero, the true solution has
been expanded in an incomplete set of orthonormal vectors. Thus, Gk G%
is the resolution matrix, and the relationship between the true solution and
the particular one is just

%= GrGLx=x—-Qgag, ¥=GkGgky, 0= QcQly. (3.4.28)

These results are so important, we recapitulate them: (3.4.18) or (3.4.20)
is the general solution. There are three vectors involved—one of them, y, is
known, and two of them, x, n, are unknown. Because of the assumption
that E has a complete orthonormal set of eigenvectors, all three of these
vectors can be expanded, exactly, as

M M M
x=Y cigi, n=Y vg, y=y (y'8)8i- (3.4.29)
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Substituting into (3.4.26), and using the eigenvector property produces

M M M
S aiEgi+ Y vigi= (v 8i)&i
i=1 i=1 i=1

K M M
= Z Aiigi + Z vigi = Z(yTgi)gi. (3.4.30)
i=1 i=1 i=1
From the orthogonality property, we must have
i +yi=y' g, 1<i<K, (3.4.31)
vi=y'g, K+1<i<M. (3.4.32)

In dealing with the first relationship, we must make a choice. If we set
vi=gin=0, 1<i<K, (3.4.33)

the residual norm is made as small as possible by completely eliminating the
range vectors from the residual. This choice is motivated by the attempt
to satisfy the equations as well as possible but is seen to have elements of
arbitrariness. A decision about other possibilities depends upon knowing
more about the system and will be the focus of considerable later attention.

It may be objected that this entire development is of little use, because
the problems discussed in Chapter 2 produced E matrices that could not
be guaranteed to have complete orthonormal sets of eigenvectors. Indeed,
the problems considered produce matrices that are usually nonsquare and
for which the eigenvector problem is not even defined.

For arbitrary square matrices, the question of when a complete orthonor-
mal set of eigenvectors exists is not difficult to answer but becomes some-
what elaborate; it is treated in all texts on linear algebra. Brogan (1985)
has a succinct discussion.

In the general situation, where an N X N — E is not symmetric, one must
consider cases in which there are N distinct eigenvalues and where some are
repeated, and the general approach requires the so-called Jordan form. But
we will find a way to avoid these intricacies and yet deal with sets of simul-
taneous equations of arbitrary dimensions, not just square ones. In the next
several sections, a machinery is developed for doing exactly that. Although
the mathematics are necessarily somewhat more complicated than is em-
ployed in solving the just-determined simultaneous linear equations using
a complete orthonormal eigenvector set, this simplest problem provides full
analogues to all of the issues in the more general case, and the reader will
probably find it helpful to refer back to this situation for insight.

Before leaving this special case, note one more useful property of the
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eigenvectors/eigenvalues. For the moment, let G have all its columns, con-
taining both the range and nullspace vectors, with the nullspace vectors
being last. It is thus an M x M matrix. Correspondingly, let A contain all
the eigenvalues on its diagonal, including the zero ones; it, too, is M x M.
Then the eigenvector definition (3.4.6) produces

EG =GA. (3.4.34)
Multiply both sides of (3.4.34) by GT:
GTEG=GTGA=A (3.4.35)

using the orthogonality of G; G is said to diagonalize E. Now multiply
both sides of (3.4.35) on the left by G and on the right by GT:

GGTEGGT = GAGT (3.4.36)
or, using the orthogonality of G when it has all its columns,
E = GAGT, (3.4.37)

a useful decomposition of G, consistent with the symmetry of E. Recall
that A has zeros on the diagonal corresponding to the zero eigenvalues, and
the corresponding rows and columns are entirely zero. Writing out (3.4.37),
these zero rows and columns multiply all the nullspace vector columns of G
by zero, and it is found that the nullspace columns of G can be eliminated,
A reduced to its K x K form, and the decomposition (3.4.37) is still exact
in the form

E=GgAxGEL . (3.4.38)
Then the simultaneous equations (3.4.26) are
GrAxGLx+n=y. (3.4.39)

Left multiply both sides by AI_{1 G% (existence of the inverse is guaranteed
by the removal of zero eigenvalues), and

Ghx + A GEn = A'GLy. (3.4.40)

But GLx are the projection of x onto the range vectors of E, and Gin
is the same projection of the noise. We have agreed to regard the latter as
zero, and we obtain

GLx = Ax'GLy,
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the dot products of the range of E with the solution. Hence, it must be
true, because the range vectors are orthonormal, that

%= GgGLx = GrA'GLy, (3.4.41)
y = Ex = GxGLy, (3.4.42)

which is identical to the particular solution (3.4.17). The residuals are
fi=y-§=y-Ex=y-GgGky=(I.—GgG%)y = QeQGy . (3.443)

One again has aly = 0.

Expression (3.4.43) shows that multiplication by QxQ% = I - Gk G%
projects a vector onto the nullspace of E, just as G KG% projects onto its
range. Such operators have an idempotent property,

I- GrGLY" = (I - GGEL), n = integer
K K

—projection onto the nullspace is invariant. For future reference, notice that
the reduced decomposition (3.4.38) permits writing,

ET(EET)"'E = E(ETE)'ET = GxG%; (3.4.44)
hence, (3.4.41) is
% =ET(EET)"'Ex = E(ETE)'ETx, (3.4.45)
and thus
QeQL = 1-ET(EET)'E)= 1-EETE)'ET), - (3.4.46)

and the latter is also idempotent (see (3.3.11)).
The bias of the solution (3.4.17) or (3.4.41) is

N
<5c—x>:GKAI_{1G£ <y > —Zaigi:—Q(;ag, (3.4.47)
i=1

and so the solution is biased unless aeg = 0.
The uncertainty is
P = D*& — x) =< Gx A 'GE (yo +n — yo)(yo + n — y0) G AR G >
+ < angagQg >
= GrARGE < nnT > GrAR'GL + Qe < agal > QF
= Gx AR GER,,Gr AL GE + QR0 QL
=Czz + QgRaan , (3.4.48)

and R, are the second moments of the coefficients of the nullspace vectors.
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Under the special circumstances that the residuals, n, are white noise, with
R,» = 021, (3.4.48) reduces to

P = 02GxAR2GEL + QeRaa QG - (3.4.49)

Either case shows that the uncertainty of the minimal solution is made up
of two distinct parts. The first part, the solution covariance, Cj;z, arises
owing to the noise present in the observations and generates uncertainty
in the coefficients of the range vectors; the second contribution arises from
the missing nullspace vector contribution. Either term can dominate. The
magnitude of the noise term depends largely upon the ratio of the noise vari-
ance, 02, to the smallest nonzero singular value, A%. Rqo may be entirely
unknown, or an estimate of its value might be available from prior informa-
tion (e.g., on the basis of the difference between the expected variance of x
and the estimated variance of X).

3.4.2 The Singular Vector Erpansion and
Singular Value Decomposition

Instead of using the least-squares method already described to find solutions
to sets of linear simultaneous equations, consider the possibility, suggested
by the eigenvector method, of expanding the solution x in a set of orthonor-
mal vectors. Equation (3.3.2) involves one vector, x, of dimension N, and
two vectors, y, n, of dimension M. We would like to use spanning or-
thonormal vectors but cannot expect, with two different vector dimensions
involved, to use just one set: x can be expanded exactly in N, N-dimensional
orthonormal vectors; and similarly, y and n can be exactly represented in
M, M-dimensional orthonormal vectors. There are an infinite number of
ways to select two such sets. But one particularly useful pair can be found,
based upon the structure of E.

The simple development leading to the discussion of the above solutions
was based upon the theorem about the eigenvectors of a matrix E which
was symmetric, so that they were guaranteed to be an orthonormal spanning
set. Let us construct such a matrix out of an arbitrary E. Put

B= {g EOT } : (3.4.50)

which by definition is not only square (dimension M + N by M + N) but
symmetric. Thus, B satisfies the theorem just alluded to, and the eigenvalue
problem

Bq; = \iq; (3.4.51)
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will give rise to M + N orthonormal eigenvectors q; (an orthonormal span-
ning set) whether or not the A; are distinct or nonzero. Writing out (3.4.51),

q1i q1:
0 ET } qnNi qni
=\ i 3.4.52
{E 0 gN+1,i | oan+1,i ( )
L dqN+M,i | AN +M,i

where gy; is the p-th element of q;. Taking note of the zero matrices, (3.4.52)
may be rewritten

gN+1,i | [ q1:
ET : =X\i| - ] : (3.4.53)
gqN+M,i | LgNi
q1i | [ qN+1,: }
E| - |=x]| - (3.4.54)
gNi J LQN—{—M,i ‘
Let
{ gN+1,i } [QM } v
u; = . , vi=| - |,orq;= }, (3.4.55)
AN+M,i qNi '

that is, defining the first N elements of q; to be v; and the last M to be
u;. Then (3.4.53)—(3.4.54) are

EVi = )\iui, (3456)

ETu; = \v;. (3.4.57)

If (3.4.56) is left multiplied by E”, and using (3.4.57), one has
ETEv; = \2v;. (3.4.58)
Similarly, left multiplying (3.4.57) by E and using (3.4.56) produces
EETu; = Mu;. (3.4.59)

These last two equatidns show, surprisingly, that the u;, v; each separately
satisfy two independent eigenvector/eigenvalue problems of the square sym-
metric matrices EET, ETE. If one of M, N is much smaller than the other,
one need only solve the smaller of the two eigenvalues for either of u;, vi,
with the other set calculated from (3.4.56) or (3.4.57).

The u;, v; are called singular vectors, and the X; are the singular val-
ues. By convention, the \; are ordered in decreasing numerical value. Also
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by convention, they are all nonnegative (taking the negative values of \;
produces singular vectors differing only by a sign from those corresponding
to the positive roots, and thus they are not independent vectors). Equa-
tions (3.4.56)—(3.4.57) provide a relationship between each u; and each v;.
But because in general, M # N, there will be more of one set than another.
The only way Equations (3.4.56)—(3.4.57) can be consistent is if A; = 0,
i > min(M, N) [where min(M, N) is read as “the minimum of M and N”].
Suppose M < N. Then (3.4.59) is solved for u;, 1 <i < M, and (3.4.57) is
used to find the corresponding v;. There are N — M v; that are not gener-
ated this way but which can be found using the Gram-Schmidt method.
Let there be K nonzero A;; then

Ev; 20, 1<i<K. (3.4.60)

These v; are known as the range vectors of E or the solution range vectors.”
For the remaining N-K vectors v;,

Ev;=0, K+1<i<N, (3.4.61)

known as the nullspace vectors of E or the nullspace of the solution. If
K < M, there will be K of the u; such that

ETu; =0, orulE#0, 1<i<K, (3.4.62)
which are the range vectors of ET and M-K of the u; such that
ETu; =0, oru/E=0, K+1<:i<M,  (34.63)

the nullspace vectors of ET or the data, or observation, nullspace vectors.
The nullspace of E is spanned by its nullspace vectors, the range of E
is spanned by the range vectors, etc., in the sense, for example, that an
arbitrary vector lying in the range is perfectly described by a sum of the
range vectors.

Because the u;, v; are complete orthonormal sets in their corresponding
spaces, we can expand X, y, n without error:

N M M
x=Y avi, y= B, n= > i, (3.4.64)
i=1 j=1 i=1

where y has been measured, so that we know (3; = u?y. To find the solu-
tion, we need o, and to find the noise, we need the ;. Substitute (3.4.64)
into the equations (3.3.2), and using (3.4.56)—(3.4.57),

M

N M K M
Z a;Ev; + Z yiu; = Z oAU, + Z yiu; = Z(ugy)ui . (3.4.65)
i=1 i=1 i=1 i=1 i=1
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Notice the differing upper limits on the summations. By the orthonormality
of the singular vectors, (3.4.65) can be solved as

aidi+y=uly, i=1toM, (3.4.66)
o= (uly =)/, N#0, 1<i<K. (3.4.67)
In these equations, if A; # 0, nothing prevents setting v; = O-that is,

un=0, 1<i<K (3.4.68)

(2

should we wish, which would have the effect of making the noise norm as
small as possible. Then (3.4.67) produces

~ %Y 1<i<K. (3.4.69)

But, because \; = 0, i > K, the only solution for these values of i to (3.4.66)
is v; = uly, and a; is indeterminate. These ~y; are nonzero, meaning that
there is always a residual, except in the event (unlikely with real data) that

ufy=0, K+1<i<N. (3.4.70)

This last equation is called a solvability condition in direct analogy to
(3.4.16).
The solution obtained in this manner now has the following form:

K uTy N
% = > /\ vi+ _; ;vi, (3.4.71)
1= 1=K+1
K
y=Ex=) (ujy)u, (3.4.72)
=1
M
n= Z (ul'y)u; . (3.4.73)
1=K+1

The coefficients of the last N-K of the v; in Equation (3.4.71), the solution
nullspace vectors, are arbitrary, representing structures in the solution about
which the equations provide no information. A nullspace is always present
unless K = N. The solution residuals are directly proportional to the
nullspace vectors of ET and will vanish only if K = M, or the solvability
conditions are met.

Just as in the square symmetric case, no choice of the coefficients of the
solution nullspace vectors can have any effect on the size of the residuals.
If we choose once again to exercise Occam’s Razor, and regard the simplest
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solution as best, then setting the nullspace coeflicients to zero,

K u;ry
g=3 —ZLy;. (3.4.74)
=N

Along with (3.4.73), this is the particular-SVD solution (a terminology ex-
plained in the next subsection). It simultaneously minimizes the residuals
and the solution norm. With < n > = 0, the bias of (3.4.74) is

<X—x>=— Y oyvi. (3.4.75)
i=K+1
The solution uncertainty is

P= ZZvZu < non” >u] T+ Z Z vz<a,a]>v

i=1j=1 i=K+1j=K+1
(3.4.76)
2

If the noise is ' white with variance o7, or if a row-scaling matrix W-T/2 has
been applied to make it so, then (3.4.76) becomes

K T
P= Zaivi\‘; + Z <a?>viv (3.4.77)

=1 1=K+1
where it was also assumed that < aja; > = < a? > §;; in the nullspace.
The influence of very small singular values on the uncertainty is clear: In the
solution (3.4.71) or (3.4.74), there are error terms u? n/\; that are greatly
magnified by small or nearly vanishing singular values, introducing large
terms proportional to o2 /)? into (3.4.77).

The decision to set to zero the projection of the noise onto the range of ET
as we did in Equations (3.4.68), (3.4.73) needs to be examined. Should we
make some other choice, the solution norm would decrease, but the residual
norm would increase. Determining the desirability of such a tradeoff requires
understanding of the noise structure—in particular, (3.4.68) imposes rigid
structures onto the residuals.

3.4.2.1 The Singular Value Decomposition

The singular vectors and values have been used to provide a convenient
pair of orthonormal spanning sets to solve an arbitrary set of simultaneous
equations. The vectors and values have another use, however, in providing
a decomposition of E.

Define A as the M x N matrix whose diagonal elements are the A;, in
order of descending values in the same order, U as the M X M matrix whose
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columns are the u;, V as the N X N matrix whose columns are the v; and
whose other elements are 0. As an example, suppose M = 3, N = 4; then

Ai 0 0 O
A= { 0 X O O} .
0 0 A3 O
Alternatively, if M =4, N =3

A0 0
0 X O
0 0 X3’
0 0 O

therefore extending the definition of a diagonal matrix to nonsquare ones.
Precisely as with matrix G considered above, column orthonormality of
U, V implies that these matrices are orthogonal,

UUT =1y, (3.4.78)-
UTU =1y, (3.4.79)
vvT =1y, (3.4.80)
VIV =1y. (3.4.81)

(It follows that U™ = U7, etc.) As with G in Section 3.4.1, should one or
more columns of U, V be deleted, the matrices will become semi-orthogonal.

The relations (3.4.56), (3.4.57) to (3.4.58), (3.4.59) can be written com-
pactly as:

EV =UA, (3.4.82)
ETU =vAT, (3.4.83)
ETEV=vATA, (3.4.84)
EETU =UAAT. (3.4.85)
If we left multiply (3.4.82) by UT and invoke (3.4.79), then
UTEV = UTUuAUVT = A. (3.4.86)

So U, V diagonalize E (with diagonal having the extended meaning for a
rectangular matrix as defined above.) :
Right multiplying (3.4.82) by VT produces

E=UAVT, (3.4.87)

This last equation represents a decomposition, called the singular value
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decomposition (SVD) of an arbitrary matrix, into two orthogonal matrices,
U, V, and a usually nonsquare diagonal matrix A.

There is one further step to take. Notice that for a rectangular A, as in the
examples above, one or more rows or columns must be all zero, depending
upon the shape of the matrix. If any of the \; = 0, ¢ < min(M, N), the
corresponding rows or columns also will be all zeros. Let K be the number of
nonvanishing singular values (the rank of E). By inspection’ (multiplying it
out), one finds that the last N-K columns of V and the last M-K columns
of U are multiplied by zeros only. If these columns are dropped entirely
from U, V so that U becomes M x K and V becomes N x K, and reducing
A to a K x K square matrix, then the representation (3.4.87) remains exact,
in the form

E=UgAgV%, (3.4.88)

the subscript indicating the number of columns, where Ug, Vg are then
only semi-orthogonal, and Ag is now square. Equation (3.4.88) should be
compared to (3.4.38). ‘

The singular value decomposition for arbitrary nonsquare matrices is ap-
parently due to Carl Eckart (Eckart & Young, 1939; see the historical discus-
sions in Haykin, 1986; Klema & Laub, 1980; or Stewart, 1993).7 Derivations
are given by Lanczos (1961), Noble and Daniel (1977), Strang (1986), and
many other recent books on applied linear algebra. The crucial role it plays
in inverse methods appears to have been first noticed by Wiggins (1972).

The SVD solution can be obtained by direct matrix manipulation rather
than vector by vector. Consider once again finding the solution to the
simultaneous equations (3.3.2), but first write E in its reduced SVD,

UxAxVEx+n=y. (3.4.89)

Left multiplying by U% and invoking the semi-orthogonality of Uk pro-
duces

AgVEx +Ukn =U%y. (3.4.90)

The inverse of Ax (square with all nonzero diagonal elements) is easily
computed, and

Vix+ AU n = AL ULy . (3.4.91)

But Vﬁx is the dot product of the first K of the v; with the unknown x.

Equation (3.4.91) thus represents statements about the relationship between

7 Eckart, a physicist turned oceanographer, had a somewhat controversial career. The
SVD may turn out to have been his most important, if least credited, contribution.
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dot products of the unknown vector, x, with a set of orthonormal vectors,
and therefore must represent the expansion coefficients of the solution in
those vectors. If we set

ULn=0, (3.4.92)
then
VvEx = Ax' ULy, (3.4.93)
and hence
% =VgAZ ULy, (3.4.94)

identical to the solution (3.4.74), which the reader is urged to confirm by
writing it out explicitly. Substituting this solution into (3.4.89),

UgAxVEVEALZ ULy +n=UxUky+n=y

or
n=(I1-UxgUL)y. (3.4.95).
Let the full U and V matrices be rewritten as
U={Ug Qu.}, (3.4.96)
V={Vk Q.} (3.4.97)

where Q., Q. contain the nullspace vectors. Then

Ex+n=y, Ex=y,
M
§=UxUky, 5=Q.Qly= > (ufyu, (3.4.98)

which is identical to (3.4.72). Note that Q,QZL = (I - UxUL), Q.Qf =
(I — Vi VZL), which are idempotent. The general solution is

% = Vg AL ULy + Qua, (3.4.99)

where o, is now restricted to being the vector of coefficients of the nullspace
vectors.
The solution uncertainty of (3.4.99) is

P = VkAZ UL <nn” > Ug A VE +Q, <ol > QF
= Cz: + Qo < ayal > QT (3.4.100)
or

P =0 VKA VE + QuRaaQF (3.4.101)
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for white noise. The uncertainty of the residuals for white noise is
Pnn =02(I-UgUL). (3.4.102)

Solution of simultaneous equations by SVD has several important ad-
vantages. Among other features, we can write down within one algebraic
formulation the solution to systems of equations that can be under-, over-, or
just-determined.® Unlike the eigenvalue/eigenvector solution for the square
system, the singular values (eigenvalues) are always nonnegative and real,
and the singular vectors (eigenvectors) can always be made a complete or-
thonormal set. Neither of these statements is true for the conventional eigen-
vector problem. Most important, however, the relations (3.4.56), (3.4.57)
are a specific, quantitative statement of the connection between a set of
orthonormal structures in the data and the corresponding presence of or-
thonormal structures in the solution. These relations provide a very pow-
erful diagnostic method for understanding precisely why the solution takes
on the form it does.

3.4.3 Some Simple Examples

The simplest underdetermined system is 1 x 2. Suppose z1 — 2z2 = 3 so
that

447 —.894

E={1 -2},U={1),V= {—.894 —.447

} , A\ =224

where the second column of V is in the nullspace of E. The general solution
isx =[.6 —1.2]7 +azve. Because K = 1 is the only possible choice here,
it is readily confirmed that this solution satisfies the equation exactly, and
a data nullspace is not possible.

The most elementary overdetermined problem is 2 x 1. Suppose

:L‘1=1,
z1=3.

The appearance of two such equations is possible if there is noise in the
observations, and they are written more properly as
z1+n =1,

1 +ng =3.

8 True, too, of the generalized least-squares formulation (3.3.66)—(3.3.68) or (3.3.38)-
(3.3.40).
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E={1 1}T, ETE represents the eigenvalue problem of the smaller dimen-
sion, and
7107 =707
U= { .07 707

where the second column of U lies in the data nullspace, there being no
solution nullspace. The general solution is x = #; = 2, which if substituted
back into the original equations produces

2
ENZ B

and hence there are residuals @ =y —y = [1 — 1]T, which are nec-
essarily proportional to up. Evidently no other solution could produce a
smaller I, norm residual than this one. The SVD produced a solution that
compromised the contradiction between the two equations and is physically
sensible.

The possibility of K < M, K < N simultaneously is also easily seen. ,

Consider the system:
1 -2 1 1
{3 : 1}XZH,
4 0 2 2

which appears superficially just-determined. But the singular values are
A1 = 5.67, Ay = 2.80, A3 = 0. The vanishing of the third singular values
means that the row and column vectors are not linearly independent sets
(not spanning sets)-indeed, the third row vector is just the sum of the first
two (but the third element of y is not the sum of the first two, making the
equations inconsistent). Thus, there are both solution and data nullspaces,
which the reader might wish to find. With a vanishing singular value, E
can be written exactly using only two columns of U, V and the linear
dependence is given explicitly as ugE =0.

},vz{1},,\1:\/§

Consider now the underdetermined system
T1 + T2 —%.’133 =1,
T1+ 2o —2x3 =2,
which has no conventional solution at all, being a contradiction, and is thus
simultaneously underdetermined and incompatible. If one of the coefficients
is modified by a very small quantity, €, to produce
z1+z2— (2+€z3 =1,
1+ 22— 223 =2, (3.4.103)
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not only is there a solution, there are an infinite number of them, which
the reader should confirm by computing the basic SVD solution and the
nullspace. Thus, the slightest perturbation in the coefficients has made
the system jump from having no solution to having an infinite number, an
obviously disconcerting situation. Such a system is ill-conditioned. How
would we know the system is ill-conditioned? There are several indicators.
First, the ratio of the two singular values is determined by e. In (3.4.103), if
we take e = 10710, the two singular values are A\; = 3.46, Ao = 4.1 X 101,
an immediate warning that the two equations are nearly linearly dependent.
(In a mathematical problem, the nonvanishing of the second singular value
is enough to assure a solution. As will be discussed later, the inevitable
slight errors in y suggest small singular values are best regarded as actually
being zero.)
A similar problem exists with the system:

1+ 130 —223=1,

1+ a2 —223=1,
which has an infinite number of solutions. But the change to

171—}—%2——2183:1,
1+ xTo—2x3=1+4¢€

for arbitrarily small ¢ produces a system with no solutions in the conven-
tional mathematical sense, although the SVD will handle the system without
any difficulty.

Problems like these are simple examples of the practical issues that arise
once one recognizes that unlike mathematical textbook problems, observa-
tional ones always contain inaccuracies; any discussion of how to handle
data in the presence of mathematical relations must account for these in-
accuracies as intrinsic, not as something to be regarded as an afterthought.
But the SVD itself is sufficienitly powerful that it always contains the infor-
mation to warn of ill-conditioning, and by determination of K to cope with
it, producing useful solutions.

3.4.8.1 The Neumann Problem

Consider the classical Neumann problem described in Chapter 1. The prob-
lem is to be solved on a 10x 10 grid as stated in Equation (1.2.7), A3¢ = ds.
The singular values of As are plotted in Figure 3-10a; the largest one
is \; = 7.8, and the smallest nonzero one is Agg = 0.08. As expected,
A100 = 0. The singular vector vigg corresponding to the zero singular value
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ishing flux across both verti-
cal walls and in the interior.
This specification satisfies the
solvability conditions and
leaves no residuals.

is not shown, because also as expected, it is a constant; ujpp, shown in
Figure 3-10b, is not a constant and has considerable structure, which pro-
vides the solvability condition for the Neumann problem, ufyoy = 0. The
physical origin of the solvability condition is readily understood: The Neu-
mann boundary conditions prescribe boundary flux rates, and the sum of
the interior source strengths plus the boundary flux rates must equal zero;
otherwise, no steady state is possible. If the boundary conditions are ho-
mogeneous, then no flow takes place through the boundary, and the interior
sources must sum to zero. In particular, the value of ujgp on the interior
grid points is constant. The Neumann problem is thus a forward problem
requiring one to deal with both a solution nullspace and a “data” solvability
condition.

As an example of solution by the SVD, let there be unit positive flux
into the box on the bottom boundary, unit positive flux out on the top
and no interior sources. The resulting particular SVD solution is shown in
Figure 3-10c. No residuals are left because the system was constructed as
fully consistent, and there is an arbitrary constant that can be added (v10o)-
The reader may wish to experiment with incompatible specifications for this
problem. This is an example of a forward problem solved using an inverse
method.
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Related inverse problems are also easily formulated. The simplest of all
would assert that ¢ is known and dg is to be determined. In the present
situation, one confirms that multiplication of the solution in Figure 3—10c
by As produces d3. One can do a number of interesting experiments with
the SVD. For example, if the equations imposing the boundary values are
dropped, the resulting range vectors, v;, describe the particular solution of
the partial differential equation, and the nullspace vectors describe the ho-
mogeneous one. In this way, one can pick apart the structure of the solution.
A more interesting possibility is to withhold knowledge of the boundary con-
ditions and ask for their determination, given the interior solution.

3.4.8.2 Relation of Least Squares to the SVD

What is the relationship of the SVD solution to the least-squares solutions?
To some extent, the answer is already obvious from the orthonormality of
the two sets of singular vectors. We begin by first asking when the simple
least-squares solution will exist? Consider first the formally overdetermined
problem, M > N. The solution (3.3.6) exists if and only if the matrix
inverse exists. Substituting the SVD for E, one finds

(ETE)™' = (VNAZ UL UNANVE) ' = (VNARVE) ™ (3.4.104)

where the semi-orthogonality of Uy has been used. Suppose that K = N,
its maximum possible value; then A%, is N x N with all nonzero diagonal
elements A\?. The inverse in (3.4.104) may be found by inspection, using
VNVE =1y,

(ETE) ™' = VyARA VY. (3.4.105)
Then the solution (3.3.6) becomes
% = (VNAR VI VNANUL = VAL ULy, (3.4.106)

which is identical to the SVD solution (3.4.94). If K < N, A% has at least
one zero on the diagonal, no matrix inverse exists, and the conventional
least-squares solution is not defined. The condition for its existence is thus
K = N, the so-called full rank overdetermined case. The condition K < N
is called rank deficient. The dependence of the least-squares solution mag-
nitude upon the possible presence of very small, but nonvanishing, singular
values is obvious.

That the full-rank overdetermined case is unbiased, as previously asserted,
can now be seen from

N (uT <y>) _Nuiyo
R
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if < n > = 0, assuming that the correct E is being used.
The identity of the SVD solution and the overdetermined full-rank solu-
tion (3.3.6) is also readily shown by directly substituting

N
X = Z ;v (3.4.107)
i=1

into the objective function (3.3.2), using the relation (3.4.56) and the or-
thogonality of u;. One finds the minimum at a; = uly/\;, \; # 0. If
any singular value vanishes, the vector orthogonality proves that no other
choice of a;, ¢ < K, can reduce J further, and so the particular-SVD so-
lution produces the best possible minimum even when the system is rank
deficient.

Now consider another least-squares problem, the one with the conven-
tional purely underdetermined least-squares solution (3.3.53). When does
that exist? Substituting the SVD into (3.3.53),

% = Vi Ay UL (U A VE VAL UT )y
= VauAn UL (U, A3, 0T) 7y, (3.4.108)
Again, the matrix inverse exists if and only if A2, has all nonzero diagonal
elements, which occurs only when K = M. Under that specific condition,
the inverse is obtained by inspection, and
% = VyAn U (Un A ULy = VAR Uy (3.4.109)
0, (3.4.110)

=}
Il

which is once again the particular-SVD solution (3.4.94)-with K = M and
the nullspace coefficients set to zero. This situation is usually referred to as
the full-rank underdetermined case. Again, the possible influence of small
singular values is apparent, and an arbitrary sum of nullspace vectors can
be added to (3.4.109).

The bias of (3.4.108) is given by the nullspace elements, and its formal
uncertainty is from the nullspace contribution. With n = 0, the formal
sample noise variance vanishes, and the particular-SVD solution covariance
C3z would be zero, if the sample variance is used. If the formally overdeter-
mined problem is converted to an exact underdetermined one as in Equa-
tion (3.3.42), then the uncertainty is calculated solely from the nullspace
contribution.

The particular-SVD solution thus coincides with the two simplest forms
of least-squares solution and generalizes both of them to the case where
the matrix inverses do not exist. All of the structure imposed by the SVD,
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in particular the restriction on the residuals in (3.4. 68), is present in the
least-squares solutions. If the system is not of full rank, then the simple
least-squares solutions do not exist. The SVD generalizes these results by
determining the elements of the solution lying in the range of E and giving
an explicit structure for the resulting nullspace vectors.

The SVD has much flexibility. For example, it permits one to modify
the simplest underdetermined solution to remove its greatest shortcoming,
the necessity that n = 0. One simply truncates the solution (3.4.74) at
K' < K < M, thus assigning all vectors v;, K’ +1 <1 < K, to an effective
nullspace (or substitutes K’ for K everywhere). The resulting residual is
then

K

S (uly)w, (3.4.111)
i=K'+1

with an uncertainty for X, i given by (3.4.100)—(3.4.102), but with the up-
per limit being K’ rather than K. Such truncation has the effect of reducing
the solution covariance contribution to the uncertainty [recall (3.4.77)] but
increasing the contribution owing to the nullspace (and increasing the po-
tential bias). In the presence of singular values that are small compared to
on, the resulting overall reduction in uncertainty may be very great.

The solution now consists of three parts,

K’ T
X = ; + Z a;v; + Z ;i (3.4.112)
'z=1 i=K'+1 i=K+1

where the middle sum contains the terms appearing with singular values
too small to be employed for the given noise, and the third sum is the strict
nullspace. Usually, one lumps the two nullspace sums together. The first
sum, by itself, represents the particular-SVD solution in the presence of
noise.

This consideration is extremely important: It says that despite the math-
ematical condition \; # 0, some structures in the solution cannot be esti-
mated with sufficient reliability to be useful. The effective rank is then not
the same as the mathematical rank.

- Evidently, truncation of the SVD offers a simple method for controlling
the ratio of solution and residual norms: As the nullspace grows by reducing
K, it follows that the solution norm necessarily is reduced and that the
residuals must grow, along with the size of the solution nullspace. The issue
of how to choose K’'—that is, rank determination in practice is an interesting
one to which we will return.



3.4 The Singular Vector Expansion 159

The full-rank overdetermined least-squares solution leaves no solution
nullspace but does produce a data nullspace (unless the special solvabil-
ity conditions are met). In this case, we have the identity,

(I- E(ETE)™'E") = 1-UnU})) = QuQ7, (3.4.113)

the idempotent projector of the data onto the nullspace of ET (the matrix
inverse is guaranteed to exist by the full-rank assumption). In the full-rank
underdetermined case, there is no data nullspace, but there is a solution
nullspace. In that situation, the relevant identity is

I-ET(EET)'E)=(I-VyVE) =Q.QF (3.4.114)

v

the idempotent projector of x onto the solution nullspace. These iden-
tities follow immediately from introduction of the SVD and the defini-
tions (3.4.96)—(3.4.97) and should be compared to the analogous result
(3.4.46) for a square symmetric E. The identities remain valid with both N,
M replaced by the actual rank, K, for any K < min(N, M). Both identities
prove useful in Chapter 6 for interpreting the Kalman filter and associated
smoothers.

3.4.83.8 Row and Column Scaling

The effects on the least-squares solutions of the row and column scaling can
now be understood. Suppose we have two equations

{ 1 1 1 } + ny . Y1

1 1.01 1 na|  \y2|’

and there is no information about the noise covariance and no row scaling
is reasonable, so W = I. The SVD of E is

Iy

L2
T

0.5764 —0.4096 0.7071
U-— {8;822 _00'72%893} V= {0.5793 0.8151  0.0000 } ,
‘ 109 0.5764 —0.4096 —0.7071

( A1 = 2.4536, Ay = .0058.

The SVD solutions, choosing ranks K’ = 1,2 in succession, are very nearly

.58
. 0.71(y1 + y2)
X ~ T .58 5
) .58
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—A1
L 07w — ) [ 82 } : (3-4.115)

.58
.58
.0058 A1

.58

~ 0.71(y1 + yz)
2.45

respectively, so that the first term simply averages the two measurements,
i, and the difference between them contributes with great uncertainty in
the second term of the rank 2 solution owing to the very small singular
value.

Now suppose that the covariance matrix of the noise is known to be

1 .999999
Ronn = {.999999 1 }

(an extreme case, chosen for illustrative purposes). Then put W = Ry,

wis2 _ [1.0000 1.0000} W’T/2—{ 1.0000 0
1 0 00014/’ ~ 1 =707.1063 707.1070 J °

. The new system to be solved is
Ty
{ 1.0000 1.0000 1.0000} o | = Y1
0.0007 7.0718 0.0007 x2 ~{707.1(—y1 + y2)
3

whose SVD is

0.0205 0.7068  0.7071
o oL fdgfjgﬁ},v:{o.gg% 00290 0.0000}
) ' 0.0205 0.7068 —0.7071

A1 = 7.1450, A2 = 1.3996.

The second singular value is now much larger relative to the first one, so
that the two solutions are

0

7.1 0
0 .71
~ 707(y2 —y1) 1% 1o } (3.4.116)
7.1 0 L4y

and the rank 1 solution is obtained from the difference of the observations,
in contrast to the unscaled solution. The result is quite sensible; given the
information that the noise in the two equations is nearly perfectly correlated,
it can be removed by subtraction.

At full rank, that is, K = 2, it can be confirmed that the solutions
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(3.4.115) and (3.4.116) are identical, as they must be. It was previously
asserted that in a full-rank formally underdetermined system, row scaling
is irrelevant to X, f, as may be seen as follows,

% = EIT(EIEIT)*ly/ — ETw-l/Q(W—T/2EETw—1/2)_1w—T/2y
— EW-2wW1/2(EET) T 'WT/2W~T/2y — ET(EET) 'y (3.4.117)

where we used the result (AB)~! = B™1A~! and both inverses must exist,
which is possible only in the full-rank situation. But the error covariance is
quite different in the two cases:

-1 [ 1.510x10* —1.505 x 10*
(BET) = {—1.505 x 104 1.505 x 10%
0.500 —0.707}

—0.707  0.300 (3-4.118)

(EIE/T)—l — {
which would give rise to very different error estimates (using a prior esti-
mate o2 of the noise variance, because here the noise residuals vanish, a
degenerate limit). In effect, the information provided in the row scaling
with R, permits the SVD to nearly eliminate the noise at rank 1 by an
effective subtraction, whereas without that information, the noise is reduced
in the solution (3.4.115) at rank 1 only by direct averaging.

There is a subtlety in row weighting. Suppose we have two equations of
form

10z + 522 + 23 =1,
10021 + 50z + 1023 = 2, (3.4.119)

after row scaling to make the expected noise variance in each the same. A
rank 1 solution to these equations by SVD is X = [.0165 .0083 .0017]7,
which produces residuals y —y = [—0.79 0.079]7-much smaller in the
second equation than in the first one.

Consider that the left side of the second equation is 10 times the first
one; in effect we are saying that a measurement of 10 times the values of
10z1 + 5z2 + z3 has the same noise in it as a measurement of one times this
same linear combination. The second equation clearly represents a much
more accurate determination of this linear combination, and the equation
should be given much more weight in determining the unknowns—and the
SVD (and ordinary least squares) does precisely that. To the extent that
one finds this result undesirable (one should be careful about why it is so
found), there is an easy remedy-divide the equations by their row norms
2 (E;;)*/?. But there may then be a contradiction if it was believed that
the noise in all equations was the same to begin with.
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An example of this situation is readily apparent in the box balances dis-
cussed in Chapter 2. Equations such as (2.4.2) for salt balance have row
norms about 35 times larger than those (2.4.1) for the corresponding mass
balance, simply because salinity is measured by convention on the Practical
Salinity Scale, which produces ocean salinities near 35. Because there is
nothing fundamental about the choice of salinity scale, it seems unreason-
able to infer that the requirement of salt balance has an expected error 35
times smaller than for density. One usually proceeds in the obvious way by
dividing the salt equations by their row norms as the first step. The second
step is to ask whether anything further can be said about the relative errors
of mass and salt balance, which would introduce a second, purely statistical
row weight. ’

Consider two independent equations in two unknowns, for example,

1 +x2=1,
221 + 120 = 2

with unique solution z1 = 1, 3 = 0. Now suppose that the right-hand side
of the second equation is totally unknown. We have several possibilities for
handling the situation. (1) Drop the second equation, and solve the first
one as an underdetermined system, giving as the minimum norm solution
71 =1/2, 2o = 1/2. (2) Downweight the second equation, multiplying it by
some very small number. The minimum norm solution is the same as in (1).
The advantage over (1) is that most software will compute the right-hand
side of the original equations after the solution has been estimated, and the
original set-up is unaltered. We thus find out that an estimate of the right-
hand side from this solution is 1.5. The disadvantage is that we work with
a 2 x 2 system rather than the 1 x 2 of (1). (3) Regard the right-hand side
of the second equation as a new formal unknown, and rewrite the system as

T1+x20 =1,
2z1 +22—q=0. (3.4.120)

Solving for the minimum norm underdetermined solution now, we obtain
71 =0, Z3 = 1, ¢ = 1, and the estimate of the right-hand side of equation
two is 1. Why is this answer different from that in (1) and (2)? The reason
is that the presence of the third unknown in the second equation in (3.4.120)
provides the information that the unknown right-hand side of equation (2)
is of the same magnitude as that of the unknowns z1, za—information that is
removed by downweighting or eliminating the equation altogether. The in-
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vestigator must make his own choice of solution, dependent upon particular
circumstances. But see the next section.

3.4.8.4 Column Scaling

In the least-squares problem, we formally introduced a column scaling ma-
trix S. Column scaling operates on the SVD solution exactly as it does in
the least-squares solution, to which it reduces in the two special cases al-
ready described. That is, we should apply the SVD to sets of equations only
where any knowledge of the solution element size has been removed first.
If the SVD has been computed for such a column-scaled (and row-scaled)
system, the solution is for the scaled unknown x’, and the physical solution
is

% =ST/%% . (3.4.121)

But there are occasions, with underdetermined systems, where a nonstatisti-
cal scaling may also be called for-the analogue to the situation considered
above where a row scaling was introduced on the basis of possible nonsta-
tistical considerations.

Example: Suppose we have one equation in two unknowns, the smallest
example of an underdetermined system:

10z, + 122 = 3. (3.4.122)

The particular-SVD solution produces X = [0.2970 0.0297]7 in which the
magnitude of z; is much larger than that of @2, and the result is readily
understood: As we have seen, the SVD finds the exact solution, subject
to making the solution norm as small as possible. Because the coefficient
of z1 in (3.4.122) is 10 times that of z2, it is obviously more efficient in
minimizing the norm to give z1 a larger value than xs.

Although we have demonstrated this dependence for a trivial example,
similar behavior occurs for underdetermined systems in general. In many
cases, this distribution of the elements of the solution vector x is desir-
able, the numerical value 10 appearing for good physical reasons. In other
problems—and the geostrophic inversion problem is an example—the numer-
ical values appearing in the coefficient matrix E are an accident (in the
geostrophic problem, they are proportional to the distance steamed between
hydrographic stations and the water depth). Unless one believed that ve-
locities should be larger where the ship steamed further, or the water was
deeper, then the solutions may behave unphysically. Indeed, in some sit-
uations the velocities are expected to be inverse to the water depth, and
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such a prior statistical hypothesis is best imposed after one has removed
the structural accidents from the system. (The tendency for the solutions
to be proportional to the column norms is not absolute. In particular, the
equations themselves may actually preclude the proportionality.)

Take a positive-definite, diagonal matrix S, and rewrite (3.3.2) as

EST/28 T/2x 4 n = y
Then,
E'x' +n=y.
Solving
¥ =ETEET) 'y, x=8"T/%%". (3.4.123)

How should S be chosen? Apply the recipe (3.4.123) for the simple one-
equation example of (3.4.122):

1 1
B = (10/5}7 /547, BET ="+ o
S11 - S22

_ 511599
EET) ! — ( 11 )
( ) 100S22 + S11/

% — 10/5111/2 [ S11522 ][3]
1/55% [ 1100852 + 11 ) ™

. _ 10/S11 [ 511522 ]
= T/2y40 — _— . 4.124
X=5T0x { 1/S22 } 10055 + 5y B (34124

The relative magnitudes of the elements of X are proportional to 10/S511,
1/S22. To make the numerical values of the elements of x the same, we
should clearly choose S1; = 10, Se2 = 1; that is, we should divide the
elements of the first column of E by v/10 and the second column by V1.
The apparent rule (which is correct and general) is to divide each column
of E by the square root of its length. The square root of the length may be
surprising but arises because of the second multiplication by the elements
of 8~T/2 in (3.4.123). This form of column scaling should be regarded
as nonstatistical in that it is based upon inferences from the numerical
magnitudes of the columns of E and does not employ information about the
statistics of the solution. Indeed, its purpose is to prevent the imposition of
structure on the solution for which no statistical basis has been anticipated.

If the system is full-rank overdetermined, the column weights drop out,
just as we claimed for least squares above. To see this, consider that in the
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full-rank case,
il (E/TE/)“]-EITy
% = ST/2(Sl/2ETEST/2)_1S1/2ETy
— §7/28-T/2(ETE)"'s~1/281/2ETy = (ETE) 'ETy . (3.4.125)

Note the importance of doing column scaling following the row scaling;
otherwise, interpretation of the row norms becomes very difficult.

3.4.8.5 Solution and Observation Resolution

Typically, either or both of the set of vectors v;, u; used to present x, y
will be deficient in the sense of the expansions in (3.4.2). Deficiency of one
or the other or both is guaranteed if the effective system rank differs from
one of M or N.

It follows immediately from Equations (3.4.3) that the particular-SVD
solution is

%=VgVEx (3.4.126)

and the data vector with which both it and the general solution are consis-
tent is

y=UgULy. (3.4.127)
Define

T,=VkV%k, (3.4.128)

T, = UxU%L, (3.4.129)

the solution and observation (data) resolution matrices, respectively.

Interpretation of the data resolution matrix is slightly subtle. Suppose
an element of y was fully resolved—that is, some row, jo, of U KU% were all
zeros except for diagonal element jo, which is one. Then a change of unity
in y;, would produce a change in X that would leave unchanged all other
elements of y. If element jo is not fully resolved, then a change of unity in
observation y;, produces a solution that leads to changes in other elements
of ¥. Stated slightly differently, if y; is not fully resolved, the system lacks
adequate information to distinguish equation i from a linear dependence on
one or more other equations.

One can use these ideas to construct quantitative statements of which
observations are the most important (data ranking). From Equation (3.4.5),
trace(T,) = K, and the relative contribution to the solution of any partic-
ular constraint is given by the corresponding diagonal element of T,.
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Consider the example (3.4.119) without row weighting. At rank 1,

T, — 0.0099 0.099
“ 1 0.099 0.9901 )"’

showing that the second equation has played a much more important role
in the solution than the first one, despite the fact that we asserted the
expected noise in both to be the same. The reason is that described above;
the second equation in effect asserts that the measurement is 10 times more
accurate than in the first equation—and the data resolution matrix informs
us of that explicitly. All of the statements made previously about resolution
matrices now apply to Ty, T,.

If row and column scaling have been applied to the equations prior to ap-
plication of the SVD, the covariance, uncertainty, and resolution expressions
apply in those new, scaled spaces. The resolution in the original spaces is

T, = ST/2T,8T/2 (3.4.130)
T, =WT/2T,W-T/2 (3.4.131)

so that
x=Tyx, §=Tuy (3.4.132)

where T/, T, are the expressions (3.4.128), (3.4.129) in the scaled space.
The uncertainty in the new space is P = S—T/2p’S—1/2 where P’ is the
expression (3.4.100) or (3.4.101) in the scaled space.

We have seen an interpretation of three matrices obtained from the SVD:
VVT UUT, VA~2VT. The reader may well wonder, on the basis of the
symmetries between solution and data spaces, whether there is an interpre-
tation of the remaining matrix UA~2UT? Such an interpretation exists,
but it will emerge most simply when we discuss constrained least squares
and Lagrange multipliers.

3.4.3.6 Relation to Tapered and Weighted Least-Squares

In using least squares, a shift was made from the simple objective func-
tions (3.3.4) and (3.3.47) to the more complicated (3.3.22) or (3.3.29). The
change was made to permit a degree of control of the relative norms of x,
n, and through the use of W, S of the individual elements and the result-
ing uncertainties and covariances. Application of the weight matrices W,
S through their Cholesky decompositions to the equations prior to the use
of the SVD is equally valid, thus providing the same amount of influence
over the solution elements. The SVD provides its control over the solution
norms, uncertainties, and covariances through choice of the effective rank
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K'. This approach is different from the use of the extended objective func-
tions (3.3.22), but the SVD is actually useful in understanding the effect of
such functions. '

Assume any necessary W, S have been applied, but retain a?(=1)asa
marker. Then, the full SVD, including zero singular values and correspond-
ing singular vectors, is substituted into (3.3.23),

% = (21 +VvATAVT)"'vATUTy,
and using the orthogonality of V, we have
% =V(ATA+ 1) 1ATUTy. (3.4.133)
The matrix to be inverted is diagonal and so

N T
. Ai(u;y)
N A Y) 3.4.13
* i=1 )‘12 +a? v ( 4

It is now apparent what the effect of tapering has done in least squares.
The word refers to the tapering down of the coefficients of the v; from the
values they would have in the pure SVD. In particular, the guarantee that
matrices like (ETE + o?I) would always have an inverse despite vanishing
singular values is seen to follow because the inverse of the sum always exists,
irrespective of the rank of E. The simple addition of a positive constant
to the diagonal of a singular matrix is a well-known method for making
it have an inverse. Such methods are a form of what is usually known as
reqularization and are procedures for suppressing nullspaces.

The residuals of the tapered least-squares solution can be written in var-
ious forms. Equation (3.3.24) can be written (using the orthogonality of U,
V),

M
= a?U(eL+ AAT)'UTy = 3 i y)a”, - (3.4.135)

that is, the projection of the noise onto the range vectors u; no longer
vanishes. Some of the structure of the range of ET is being attributed to
noise, and it is no longer true that the residuals are subject to the rigid
requirement (3.4.68) of having zero contribution from the range vectors.
An increased noise norm is also deemed acceptable, as the price of keep-
ing the solution norm small, by assuring that none of the coefficients in
the sum (3.4.134) becomes overly large-values we can control by varying
o?; Wiggins (1972) discusses this form of solution. The covariance of this
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solution about its mean [Equation (3.3.25)] is readily rewritten as

= N i AiAjUiRnnug—' V~VT
- i=1j=1 (AF +a)(A] +a?) H
N 2
by
:0-31, — 2 L 5 QVZVT
o1 (A + o )

= 2V(ATA +’Iy) AT A(AT A+ o*1y) "' VT (3.4.136)

where the second line is again the special case of white noise. The role of a2
in controlling the solution variance, as well as the solution size, should be
plain. The tapered least-squares solution is biased, but the presence of the
bias can greatly reduce the solution variance. In agnostic situations where
one has no real knowledge of any expected variation in the relative sizes
of the individual elements of x, n, nor of any correlations amongst them,
both W, S are proportional to the identity. In this situation o? is often
retained as a simple measure of the ratios of the diagonal elements of W,
S and used to control the relative norms of %, n. Study of the solution as
a function of a2 is known as ridge regression (Hoerl & Kennard, 1970a,b),
but the interpretation of the results is clearer in the statistical methodology
of Section 3.5. Elaborate techniques have been developed for determining
the right value of a? (see Lawson & Hanson, 1974, or Hansen, 1992, for
reviews).?

The uncertainty, P, is readily found as

N T N 2 T
ViV; AV
P= 2 1Y + 2 A
o th:l (a2 + A?)2 In = (A2 + 0?)?
— ®V(AT A+ 1) 2VT
+ 2V(ATA+ 2T ATA(AT A + o217 VT (3.4.137)

where one uses formally, x = VVTx, < xxT > = a1, and the contribution
from the noise components is clearly separated.

The truncated SVD and the tapered SVD-tapered least-squares solutions
produce the same qualitative effect: It is possible to increase the noise norm
while decreasing the solution norm. Although the solutions differ somewhat,
they both achieve a purpose stated above—to extend ordinary least squares
in such a way that one can control the relative norms. The quantitative
difference between them is readily stated: The truncated form makes a clear
separation between range and nullspace in both solution and residual spaces;

9 Hansen’s (1992) discussion is particularly interesting because he exploits the generalized
SVD, which is used to simultaneously diagonalize two matrices.
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the particular SVD solution contains only range vectors and no nullspace
vectors. The residual contains only nullspace vectors and no range vectors.
The tapered form permits a merger of the two different sets of vectors with
both solution and residuals containing some contribution from both formal
range and nullspaces.

One advantage of the tapered form over the truncated SVD or sim-
ple least squares is worth noticing. A common empirical measure of a
good least-squares fit is through the requirement that the residuals should
be unstructured—that is, as nearly white noise as possible: < n > = 0,
< nnT > =1 as estimated by the sample averages. But if ordinary least
squares (3.3.6) or the equivalent truncated SVD are used, the residuals
cannot actually conform to this requirement because they lack the range
vectors. That is,

T

M M
<Y Bw || D 8w | >#I, K>0, (3.4.138)
K41 K+1

because any white-noise process must include contributions from the entire
spanning set. If K < M, this problem may be undetectable. But if K
approaches M, the possible structure in the residuals is so restricted by
the few nullspace vectors available that it may produce highly non-random
values. These considerations become paramount in Section 3.6.

8.4.8.7 Resolution of Tapered Solutions to Simultaneous Equations

The tapered least-squares solutions have an implicit nullspace, arising from
the terms corresponding to zero singular values, or values small compared to
a?. Such solutions are often computed directly in the form (3.3.23)-(3.3.25)
without ever bothering with the SVD—to save computing. But that solution
form does a good job of hiding the existence of what should still be regarded
as an effective nullspace.

To obtain a measure of solution resolution in the absence of the explicit
v; vectors, consider a situation in which the true solution were x;, = d; ;,—
that is, unity in the jy element and zero elsewhere. Then, in the absence of
noise (the resolution analysis applies to the noise-free situation), the correct
value of y would be

EXjO = Yjo > (3.4.139)

defining yj,. If one actually knew (had measured) y;,, what solution x;,
would be obtained?
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Tapered least squares produces [in the form (3.3.61)]
%j, = ET(BET 4 o*1)'y;, = ET(EET + 1) 'Exj,,  (3.4.140)
which is row (or column) jo of
T, = ET(EET + o?1) 'E. (3.4.141)

Thus, we can interpret any row of T, as the solution resolution for a Kro-
necker delta, correct solution, in that element. It is an easy matter, us-
ing the SVD of E and letting a? — 0 to show that (3.4.141) reduces to
VVT. These expressions apply in the row- and column-scaled space; Equa-
tions (3.4.130)—(3.4.131) are used to scale and rotate them into the original
spaces.

An obvious variant of (3.4.141) follows from the alternative least-squares
solution (3.3.23) and is

T, = (ETE + *I)'E"E. (3.4.142)
A solution resolution matrix is obtained similarly: Let y;, be zero, except
for one in element j;. Then (3.3.61) produces
%;, = ET(EET +o°T) " ly;, ,
which if substituted into the original equations is
Ex;, = EET(EET + o) 'yj, = i,
and thus
T, = EET(EET + °T)7 1. (3.4.143)
The alternate form from (3.3.23) is
T, = E(ETE + o*1) 'ET, (3.4.144)
which reduces to UUT as a2 — 0. If row- and column-scaling matrices have

been applied, the resolution matrices are modified in analogy to (3.4.130)—
(3.4.132).

3.5 Using a Steady Model-Combined
Least Squares and Adjoints

Consider now a modest generalization of the constrained problem Equa-
tion (3.3.2) in which the unknowns x are also meant to satisfy some con-
straints exactly, or nearly exactly, for example

Ax =q, (3.5.1)
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but to satisfy the observations (3.3.2) only approximately, in a least-squares
sense. Equations like (3.5.1) will be referred to as the model. An example of
a model occurs in acoustic tomography where we may have measurements of
both density and velocity, and they are connected by the thermal wind equa-
tions (this case is written out by Munk & Wunsch, 1982). The distinction
between the model (3.5.1) and the observations is usually an arbitrary one;
A may well be some subset of the rows of E, for which the corresponding
error is believed negligible. What follows can in fact be obtained by impos-
ing the zero-noise limit for some of the rows of E in the solutions already
described. Furthermore, whether the model should be satisfied exactly, or
should contain a noise element, too, is situation dependent. The thermal
wind relationship is an approximation, and model error would normally be
included in its enforcement, in which case the distinction between model
and observations is purely conceptual. One should be wary of introducing
exact equalities into estimation problems, because they carry the strong
possibility of introducing small eigenvalues, or near singular relationships,
into the solution, which may dominate the results.

Several approaches are now available to us. Consider for example, the
objective function,

J=(Ex—y)T(Ex —y) 4+ o*(Ax — q)T(Ax — q) (3.5.2)

where W, S have been applied if necessary and a? is retained as a tradeoff
parameter. (This objective function corresponds to the requirement of a
solution of the concatenated equation sets,

tap[a) =12 59

in which u is the model noise, and the weight given to the model is o?1.) By
letting a® — oo, the model can be forced to apply with arbitrary accuracy.
For any finite o, the model is formally a soft constraint here because it
is being applied only in a minimized sum of squares. The solution follows
immediately from (3.3.6) with

E y
E

assuming the matrix inverse exists.

Alternatively, the model can be imposed as a perfect hard constraint
with w = 0. All prior covariances and scalings having been been applied,
and Lagrange multipliers introduced, reduces the problem to one with an
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objective function
J=nTn-2uT(Ax—q) = (Ex—y)T(Ex—-y) - 2uT(Ax — q), (3.5.4)

which is just a variant of (3.3.47). To avoid confusion, it is important to
realize that we have essentially interchanged the roles of the two terms
in (3.3.47)-with the expression (3.5.1) to be exactly satisfied but the obser-
vations only approximately so.

Setting the derivatives of J with respect to x, u to zero gives the normal
equations

—ETy +ETEx - ATp =0, (3.5.5)

Ax—q=0. (3.5.6)

Equation (3.5.5) represents the adjoint, or dual model, for the adjoint or
dual solution p. We can distinguish two extreme cases, one in which A is

square, N x N, and of full rank, and one in which E has this property. In
the first case,

x=A"1q (3.5.7)
and from (3.5.5),
ETEA 'q-ETy=ATp (3.5.8)
or
p=ATETEA 1q-ETy). (3.5.9)

Here, the values of x are completely determined by the full-rank, noise-
less model, and the minimization of the deviation from the observations is
passive. The Lagrange multipliers or adjoint solution, however, are useful,
providing the sensitivity information, 8J/8q = 2u. The uncertainty of this
solution is zero because of the perfect model (3.5.6).

In the second case, from (3.5.5),

% = (ETE)[ETy + ATj] = %, + (ETE) 'ATq

where X, = (ETE)_lETy is the ordinary, unconstrained least-squares so-
lution. Substituting into (3.5.6) produces

i=[AETE) AT (q - Ax,) (3.5.10)
and
% =%, + (ETE)'ATIA(ETE) AT (g - A%y), (3.5.11)

assuming A is full-rank underdetermined. The perfect model is underde-
termined; its range is being fit perfectly, with its nullspace being employed
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to reduce the misfit to the data as far as possible. The uncertainty of this
solution may be written (Seber, 1977)

P = D*(% — x) (3.5.12)
= o2 {(ETE)—1 — (ETE) AT [A(ETE)_lAT]—l A(ETE)*l} ,

which represents a reduction in the uncertainty of the ordinary least-squares
solution (first term on the right) by the information in the perfectly known
constraints. The presence in the inverse of terms involving A in these so- -
lutions is a manifestation of the warning about the possible introduction of
components dependent upon small eigenvalues of A.

Example: Consider the least-squares problem of solving

z1+n =1
o +ng =1
z1+z2+n3=3

with uniform, uncorrelated noise of variance 1 in each of the equations. The
solution is then

% = [1.3333 1.3333]%

with uncertainty

p_ [0.6667 —0.333
~1-0.333 0.6667 f

But suppose that it is known or desired that z; — zo = 1. Then (3.5.11)
produces % = [1.8333 0.8333]7, u = 0.5, J = 0.8333, with reduced uncer-
tainty

p_ 01667 0.1667
~10.1667 0.1667 J °

If the constraint is shifted to zy — x5 = 1.1, the new solution is
% = [1.8833 0.7833]

and the new objective function is J = 0.9383, a shift consistent with p
and (3.3.56).

If neither A nor E is full rank, then the inverses appearing in equations
(3.5.7), (3.5.11) will not exist. Either form can be used then, by replacing
the inverses by, say, the particular SVD inverse. But in\ that case, the
solution will not be unique if the combined observations and model leave a
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Figure 3—11. The Stommel
Gulf Stream model solved us-
ing the adjoint: (a) depicts
the windstress curl imposed,
and (b) is the resulting
transport streamfunction
showing the expected west-
ward intensification. The
adjoint solution is shown in
(c). Because it satisfies the
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nullspace in x. The objective function (3.5.4) can be modified to have an
extra term in x7 S~ !x if desired.

If the model has error terms, too, either in the forcing, q, or in missing
physics, it is modified to '

Ax+u=gq. (3.5.13)

A hard-constraint formulation can still be used, in which (3.5.13) is still to
be exactly satisfied, imposed through an objective function of form,

J=Ex-y)'(Ex—y)+ o?uTu—2uT(Ax+u—q). (3.5.14)

Tt is again readily confirmed that the solutions using (3.5.2) or (3.5.14) are
identical, and the hard/soft distinction is seen again to be artificial unless
one truly has model equations with u = 0. Equation (3.5.13) represents a
model that is to be exactly satisfied; but it has an unknown control con-
tribution, u. Objective functions like (3.5.14) will be used extensively in
Chapter 6. The most general form of objective function would be

J=nTR In+xTS x+u’Q lu-2uT(Ax+u—q). (3.5.15)

If A is square and full rank, and u = 0, one can readily confirm that R and
S drop out of the solution.

Example: Let us apply these ideas to the Stommel Gulf Stream model. A
code was written to solve by finite differences the nondimensional equation
o «

eV2¢ + 5% =k VxT (3.5.16)
and is depicted in Figure 3-11 for the case ¢ = 0.05 and ¢ = 0 on the
boundaries. The nondimensionalization and the basin dimension 0 < z <,
0 < ¢ <  are those of Schroter and Wunsch (1986). The windstress curl
was k-V x 7= —sinzsiny.
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The discretized form of the model is then the perfect N x IV system

Ax = q, X= {¢’ij}7 (3517)

and q is the equivalently discretized windstress curl. The theory of partial
differential equations shows that this system is full rank and generally well
behaved. But let us ignore that knowledge and seek the values x that make
the objective function (3.3.47)

J=xTx-2u"(Ax —q) (3.5.18)
stationary with respect to x, p:
ATp =x (3.5.19)
Ax =q. (3.5.20)

xTx is readily identified with the solution potential energy. The solu-
tion p, corresponding to the circulation of Figure 3-11b, is shown in Fig-
ure 3—-11c. What is the interpretation? The Lagrange multipliers represent
the sensitivity of the Stommel solution potential energy to perturbations in
the windstress curl. We see that the sensitivity is greatest in the eastern
half of the basin and indeed displays a boundary layer character. Schroter
and Wunsch (1986) discuss this result in the context of the behavior of the
Sverdrup interior of the Stommel model. A physical interpretation of the
Lagrange multipliers can be inferred, given the simple structure of the gov-
erning equation (3.5.16) and the Dirichlet boundary conditions. This equa-
tion is not self-adjoint in the sense discussed by Morse and Feshbach (1953)
or Lanczos (1961); the adjoint partial differential equation is of form

eVip — g—‘; = forcing (3.5.21)

subject to mixed boundary conditions, and whose discrete form is (3.5.19),
obtained by taking the transpose of the A matrix of the discretization. It
is obvious from both (3.5.21) and Figure 3-1lc that the adjoint solution
represents flow streamlines in an ocean in which the sign of 8 has been
reversed, resulting in an eastern boundary current, and the forcing is pro-
vided by the Stommel solution stream function. We can thus usefully think
about the physics of an adjoint, or dual, ocean (or one might prefer the
term anti-ocean) that governs the sensitivity of the real or “direct” ocean
to parameter specifications. The structure of the p would change if J were
changed.

The original objective function J is very closely analogous to the La-
grangian (not to be confused with the Lagrange multiplier) in classical me-
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chanics. In mechanics, the gradients of the Lagrangian commonly are forces.
The modified Lagrangian, J', is used in mechanics to impose various physi-
cal constraints, and the virtual force required to impose the constraints—for
example, the demand that a particle follow a particular path-is the La-
grange multiplier. Lanczos (1970) has a good discussion. In an economics/
management context, the multipliers are usually called shadow prices be-
cause they are intimately related to the question of how much profit (the
objective function) will change with a change in the availability or cost of
a product ingredient. |

More generally, there is a close connection between the stationarity re-
quirements imposed upon various objective functions throughout this book
and the mathematics of classical mechanics. In Chapter 6, this analogy will
be exploited to introduce the Hamiltonian form of governing equations.

A conventional dynamicalmodel is one that is properly posed, which can
be interpreted here as meaning that A is full rank of dimension M x M
but it need not actually be so. Let us examine the state vector x, Lagrange
multiplier p, pair in a little more detail. As already noted if (3.5.19) is
underdetermined, then (3.5.20) is overdetermined (and vice versa). Some
insight is obtained if the pair is rewritten in the SVD form

VAUTp =x, (3.5.22)

. UAVTx =q. (3.5.23)

Because of the structure of (3.5.22)—(3.5.23), the overdetermined system
(whichever of the pair it is) will automatically satisfy the necessary solv-

ability conditions, and an ill-posed model is readily handled.
Using the SVD inverse, (3.5.22)—(3.5.23) produce

p=UgAFU%q. (3.5.24)
We know that p are the sensitivity of J to perturbations in q. Thus,
oJ
70 2p = 22U AR U%kq, (3.5.25)

where p contains the missing fourth matrix expression noticed in Section 3.4
and is the sensitivity of the objective function xTx to perturbations in the
model elements q. Taking the second derivative,

0J .
is the Hessian of J. Evidently, if any of the \; become very small, the
objective function will be extremely sensitive to small perturbations in the
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specification of q, producing an effective nullspace of the problem. Equa-
tion (3.5.26) suggests that assertions that models are perfect can lead to
difficulties. If the objective function (3.3.47) is used, Equation (3.5.26) rep-
resents the sensitivity to the data, y.

3.5.1 Relation to Green’s Functions

There is a close relationship between adjoint models and Green’s functions.
Consider any linear model, for example (1.2.4), the discrete Laplace equa-
tion with Dirichlet boundary conditions, which can be written as

Ax=p. (3.5.27)
To solve it, consider the collection of N adjoint problems
ATGT =1 ‘ (3.5.28)
or
GA =1, (3.5.29)

left multiplying (3.5.27) by G, right multiplying (3.5.29) by x, and sub-
tracting,

GAx-GAx=Gp—x (3.5.30)

or
x = Gp. (3.5.31)

G is usually called the Green’s function, which is seen to here satisfy a set
of problems adjoint to the forward problem. The connection to the role of
Green’s functions in partial differential systems is laid out clearly in Morse
and Feshbach (1953) and Lanczos (1961).

As in the general theory of Green’s functions, there is an intimate re-
lationship between the solution to (3.5.29) and the solution to the original
problem, (3.5.27), for point disturbances. Consider the N separate problems

AXe =1 (3.5.32)

where each column of X is the solution to a different right-hand side
column of I.. As written, (3.5.32) is actually two different types of problem
in a combined notation: In one type, a boundary value at one grid point
is being set to 1, with zero everywhere else, and the interior sources, p, are
all zero. In the other type, the boundary conditions are all zero, but one of
the interior sources is being set to 1, all others being zero. Each separate
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problem in (3.5.32) gives rise to a solution vector x¢(jo), where jo is the
index of the nonzero boundary condition, or interior position source.

Now from (3.5.29), Xg = G = A~ 1-that is, each column of G corre-
sponds to the solution to the forward problem for a unit disturbance at a
"particular boundary or grid point. Using the SVD for A, it follows that

G=UuA"VT (3.5.33)

(if A is not of full rank, reduced SVDs are used).
Now consider a different problem. We wish to solve (3.5.27) but in addi-
tion have the independent knowledge that at an interior point, ¢,

mjo = g?)jo , (3.5.34)

which is not the same as specifying a disturbance at this point-rather it
is a piece of information (compare Lanczos, 1961, p. 207). With the ad-
dition of the original equations and boundary conditions, the problem is
now formally overspecified. Unless the value of 5, is chosen to be the spe-
cific value consistent with the solution to the original problem, or unless
we are prepared to admit noise unknowns into the problem, the combina-
tion of (3.5.27) and (3.5.34) is a contradiction. Consider the consistency
relationship that determines the unique value of gi;jo, which would permit a
solution by forming the overdetermined system

A
Asx = p1, Ay = {5“ } pL = L-ﬂ. (3.5.35)
Jjo Jo

The SVD of A; will produce N —v; and N — u;, corresponding to nonzero
singular vectors. There will be one extra uy.1 in the nullspace. The
solvability condition (3.4.70) is then

uk i 1p1 =0, (3.5.36)
which is
u1$+1(j0)P

S EEE— 3.5.37
un+1,N+1(jo) ( )

bjo =
where uy_ ; is defined as the vector containing only the first N elements
of uy1 and jo is written as an argument in u’y; to show its dependence
upon the particular location of the information; un+1,n+1(jo) is the N+ 1st
element of the nullspace vector. The calculation (3.5.37) can be done for
each interior point jo and can be done for all interior points simultaneously
by appending a separate equation of form (3.5.34) to (3.5.27) for each jo as

Ax=p,
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Ix = ¢ (3.5.38)
where ¢ = [¢},] is the vector of data points, or
A
A1X = pl,Al = { I } , P1 = [g] . (3539)

Let the nullspace of AT w;, N+ 1 <4 < 2N, form a matrix, Q. The
solvability conditions are

Qlp =0 (3.5.40)
or
{0} ' = —{uin}7p
where {u;z,} is the matrix composed of the elements of the nullspace u; in

positions N + 1 < j < 2N, and {u;z, } are the first N elements of these
vectors. Thus,

¢ =—{wis,} T{wis}p. (3.5.41)

But ¢ is then a solution to the original problem, and it must follow [Equation
(3.5.31)] that

G = —{up,} T{uwin}". (3.5.42)
If ¢ are regarded as “data,” then one can write instead,
x=Go. (3.5.43)

Thus, although G is the solution to the physical problem of a point dis-
turbance at a boundary point, or an interior point (keeping in mind the
distinction between the physics of these two cases), it also serves as a way
of determining the consistency of a set of “data,” (3.5.39), with the solution
to the original model system. If ¢ are noisy, with white-noise contaminant,
(3.5.43) will be a consistent solution to the equations agreeing as best as is
possible with the observations.

3.6 Gauss-Markov Estimation, Mapmaking, and
More Simultaneous Equations

The fundamental objective for least squares is minimization of the noise
norm (3.3.4), although we complicated the discussion somewhat by intro-
ducing trade-offs against || X ||, various weights in the norms, and even the
restriction that % should satisfy certain equations exactly. Least-squares
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methods, whether used directly as in (3.3.6) or indirectly through the vec-
tor representations of the SVD, are fundamentally deterministic-W, S, a?
need not be given any statistical interpretation whatever—although some-
times one uses covariances for them. Statistics were used only to under-
stand the sensitivity of the solutions to noise, and to obtain measures of the
expected deviation of the solution from some supposed truth.

But there is another, radically different, approach to obtaining estimates
of the solution to equation sets like (3.3.2), directed more clearly toward
the physical goal: to find an estimate X which deviates as little as possible
in the mean square from the true solution. That is, we wish to minimize
the statistical quantities < (X — x)? >. The next section is cléyoted to
understanding how to find such an X (and the corresponding 1) through an
excursion into statistical estimation theory. It is far from obvious that this
% should bear any resemblance to one of the least-squares estimates, but as
will be seen, under some circumstances the two are identical. Their possible
identity is extremely useful but has apparently led many investigators to
confuse the methodologies and therefore the interpretation of the result.

2.6.1 The Fundamental Result

Suppose we are interested in making an estimate of a physical variable x,
which might be a vector or a scalar and might be constant with space and
time, or vary with either or both. To be definite, let x be a function of an
independent variable r, written discretely as r; (it might be a vector of space
coordinates, or a scalar time, or an accountant’s label). Let us make some
suppositions about what is usually called prior information. In particular,
suppose we have an estimate of the low-order statistics describing x-that
is, we specify its mean and second moments:

<X>=Xg9, < x(ri)x(rj)T > = R;m(l‘i, I‘j) . (3.6.1)

To have a concrete problem, one might think of x as being temperature
at 700-m depth in the ocean (a scalar) and r; as a vector of horizontal
positions; x is the vector each of whose elements is the scalar value at a
different position. Alternatively, in one dimension, the elements of x would
be the salinity along a surface transect by a ship. Then r; is the scalar of
position, either time or distance, and r is the vector of all such positions.
But if the field of interest is the velocity vector, then each element of x
is itself a vector, and one can extend the notation in a straightforward
fashion. To keep the notation a little cleaner, however, we will usually treat
the elements of x as scalars.
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Now suppose there exist observations, y;, as a function of the same coor-
dinate r;, with known second moments

T>, 1<4,j<M

(3.6.2)
(the individual observation elements can also be vectors—for example, two
or three components of velocity and a temperature at a point—but as with
x, the modifications required to treat this case are straightforward, and
we will maintain the simplicity of assuming scalar observations). Could
the measurements be used to make an estimate of x at a point I, which
may not coincide with one of the places (labels) where an observation is
available? The idea is to exploit the concept that finite covariances carry
predictive capabilities from known variables to unknown ones. A specific
example would be to suppose the measurements are of temperature y(r;) =
yo(r;)+n(r;), where n is the noise, and we wish to estimate the temperature
at different locations, perhaps on a regular grid ¥, 1 < oo < N. This special
problem is one of gridding or mapmaking (the tilde is placed on r, as a
device to emphasize that this is a location where an estimate is sought; the
numerical values of these places or labels are known). Alternatively, and
somewhat more interesting, perhaps the measurements are more indirect,
with y(r;) representing a velocity field component at depth in the ocean and
believed connected through the thermal wind equation to the temperature
field. We might want to estimate the temperature from measurements of
the velocity.
" Given the discussion immediately following Equation (3.2.30), we seek an
estimate Z(T,), whose dispersion about its true value, (¥4), is as small as
possible-that is,

Ry, =< yyl >, Ray(ri, rj) = < x(ri)y(ry)

P(f'aaf'a) =< (i"(fa) - $(fa))(:‘ﬁ(f‘ﬂ) - I(f‘ﬁ)) > |f-a:f'5

is to be minimized (a minimum variance estimate). If we would like to
answer the question for more than one point, and if we would like to un-
derstand the covariance of the errors of our estimates at various points rg,
then we can form a vector of values to be estimated, {Z(r,)} = X, and the
uncertainty among them,

P(fa, i5) = < (#(Fa) — 2(Fa))(E(Es) — 2(E5)) (3.6.3)
>, 1<a<N,1<G<N,

where the diagonal elements are to be individually minimized.
What should the relationship be between data and estimate? At least
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initially, one might try a linear combination of data,
M
B(Fa) = ) Blfa 1)y(rs), (3.6.4)
j=1

for all o, which makes the diagonal elements of P in (3.6.3) as small as
possible. All the points ¥, can be treated simultaneously by letting B be
an M x N matrix, and

x = B(Fq, rj)y - (3.6.5)

(This notation is mixed. Equation (3.6.5) is a shorthand for (3.6.4), in
which the argument has been put into B explicitly as a reminder that there
is a summation over all the data locations r; for all mapping locations To.)

An important theorem, usually called the Gauss-Markov theorem, pro-
duces the values of B so as to minimize the diagonal elements of P. The
following heuristic derivation is based on that in Liebelt (1967): Substitut-
ing (3.6.5) into (3.6.3) and expanding,

P(fa, £5) = < (B(Fa, 13)y — 2(fa)) (B(Es, 1)y — (Fp))" >
=< (By —x)(By —x)* > lagp
—B<yy' >BT—<xyT >BT =B <yx" > + <xx’ >|,4(3.6.6)

(keep in mind that y is a function of the data positions r;, X is a function of

the estimation positions I3, and B is a function of both). Using Ry = Rgm,
Equation (3.6.6) is
P = BR,,B” — R,,BY - BR], + Re.. (3.6.7)

Notice that because Ry, represents the moments of x evaluated at the
estimation positions, it is a function of T, T3, whereas R, involves covari-
ances of y at the data positions with x at the estimation positions, and is
consequently a function Ry (Fa, rj)-

Now, by completing the square (3.1.26), Equation (3.6.7) becomes

P = (B - RyyR, )Ry, (B — RyyRy))" —RoyRJRY, + Row. (3.6.8)

- The diagonal elements of (3.6.8) are the variances of the estimate at points
o about their true values. Because R, and R, are positive-definite, they
and their inverses have positive diagonal elements (if they are only positive
semidefinite, Ry_y1 has to be redefined, but we will ignore this pathology).
By the symmetries present, then, the diagonal elements of all three terms
in (3.6.8) are positive. Thus, minimization of any diagonal element of P is
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obtained by choosing B so that the first term vanishes, or
B(fa, ;) = ReyRy, - (3.6.9)
Then the minimum variance estimate is
%(Fa) = ReyR,, Y, (3.6.10)

and the actual minimum value of the diagonal elements of P is found by
substituting back into (3.6.7), producing

P(Fa, T3) = Rua(Fa, £5) — Ruy(Fa, 15)Ryy (rj, ta)RL, (B, T2) - (3.6.11)
The bias of (3.6.10) is
<%-x>=RyRy <y>-x. (3.6.12)

If < y > = x = 0, the estimator is unbiased and called a best linear unbiased
estimator, or BLUE; otherwise, it is biased. It is not difficult to show that
% is also the maximum likelihood estimate if the solution is jointly normal.

3.6.2 Linear Algebraic Equations

The result (3.6.9)—(3.6.11) is the abstract general case and is deceptively
simple. Understanding it is far from trivial, and for many applications,
some simplifications are very useful. Suppose the observations are related
to the unknown vector x as in our canonical problem—that is, through a set
of linear equations: Ex + n = y. The measurement moments, R, can be
computed directly:

Ry, = < (Ex 4 n)(Ex + n)7 > = ER;oE” + Ry (3.6.13)

where the unnecessary but simplifying and often excellent assumption was
made that the cross-terms of form

R., =Rl =0, (3.6.14)
so that
Rgy = < x(Ex+1n)T > = Re,E", (3.6.15)

that is, there is no correlation between the measurement noise and the actual
state vector (e.g., that the noise in a temperature measurement does not
depend upon whether the true value is 10° or 25°).

Under these circumstances, Equations (3.6.10), (3.6.11) take on the form:
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% = RupET (ERgoET + Ryn) 7'y, (3.6.16)
i = {1 - ERzE' (BR5.E” + Ron) '}y, (3.6.17)
P = R,, — ReeET(ERET + Ryp) 'ERg, (3.6.18)

P.n = {I- ERzE"(ERs:ET + Ryn) '}
Ron {1 - ERzE" (ERoET + R..) '} . (36.19)

These latter expressions are extremely important; they permit discussion
of the solution to a set of linear algebraic equations in the presence of noise
using information concerning the statistics of the noise and of the solu-
tion. Notice that they are identical to the least-squares expression (3.3.66)—
(3.3.70) if S = Rgz, W = Rpp.

From the matrix inversion lemma, Equations (3.6.16)—(3.6.18) can be
rewritten

%= (R} +ETR;.E)'ETR; )y, (3.6.20)
i={1-BR; + ETR,'E)'ETR,}}y, (3.6.21)
P=(R;!+E'R,E)"", (3.6.22)

P, ={I-ER; + ETR,.E)'ETR;}} x
R, {I- E(R;; + ETR;)E)'ETR;1} . (36.23)

Although these alternate forms are algebraically and numerically identical
to (3.6.16)(3.6.19), the size of the matrices to be inverted changes from
M x M matrices to N x N, where E is M x N (but note that R, is
M x M; the efficacy of this alternate form may depend upon whether the
inverse of Ry is known). Depending upon the relative magnitudes of M,
N, one form may be much preferable to the other; finally, (3.6.22) has an
important interpretation that will be discussed when we come to recursive
methods. Recall, too, the options we had with the SVD of solving M x M or
N x N problems. Equations (3.6.20)—(3.6.23) are identical to the alternative
form least-squares solution (3.3.38)—(3.3.41) if S = Rez, W = Ran.

The solution (3.6.16)—(3.6.18) or (3.6.20)-(3.6.22) is an estimator; it was
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found by demanding a solution with the minimum dispersion about the true
solution and is seen, surprisingly, to be identical with the tapered, weighted
least-squares solution when the least-squares objective function weights are
chosen to be the corresponding second-moment matrices of x, n. This cor-
-respondence of the two solutions often leads them to be seriously confused.
It is essential to recognize that the logic of the derivations are quite distinct:
We were free in the least-squares derivation to use weight matrices that were
anything we wished—as long as appropriate inverses existed.

The correspondence of least squares with minimum variance estimation
can be understood by recognizing that the Gauss-Markov estimator was
derived by minimizing a quadratic objective function. The least-squares
estimate was obtained from minimizing a summation that was a sample es-
timate of the Gauss-Markov objective function with S, W properly chosen.
The coincidence of the answers can be exploited in a number of ways. For ex-
ample, we infer immediately that a resolution discussion directly analogous
to Equations (3.4.142)—(3.4.144) for the least-squares solution is possible for
the Gauss-Markov solution.

As with any statistical estimator, one must make posterior checks that
the behavior of X, n is consistent with the assumed prior statistics reflected
in Rzz, Rnn, and any assumptions about their means or other properties.
Such posterior checks are both essential and very demanding. One some-
times hears it said that estimation using Gauss-Markov and related methods
is “pulling solutions out of the air” because the prior moment matrices R,
R, often are only poorly known. But producing solutions that pass the
test of consistency with the prior covariances can be very difficult. Solutions
tend to be somewhat insensitive to the details of the prior statistics, and it
is easy to become overly concerned with the detailed structure of Rz, Ry,.
As stated previously, it is also rare to be faced with a situation in which one
is truly ignorant of the moments—true ignorance meaning that arbitrarily
large or small numerical values of z;, n; would be acceptable. In the box
inversions of Chapter 2 (to be revisited in Chapter 4), deep ocean velocity
fields of order 1000 cm/s would be absurd, and their absurdity is readily
asserted by choosing Ry, = diag((10 cm/s)?), which reflects a mild belief
that velocities are 0(10 cm/s) with no known correlations with each other.
Testing of statistical estimates against prior hypotheses is a highly devel-
oped field in applied statistics, and we leave it to the references (e.g., Seber,
1977) for their discussion. Should such tests be failed, one must reject the
solutions X, n and ask why they failed—as it usually implies an incorrect
model, (E), or misunderstanding of the observational noise structure.

If the intention is that least-squares solutions are to be equivalent to the
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Gauss-Markov ones, they must pass the same statistical tests. The simplest
of these is that the weight matrices, thought to represent the covariances
of x, n, should be shown after the fact to have been reasonable. Objective
functions such as (3.3.36) must also have values consistent with the hypoth-
esis. For example, substitution of the (scaled and weighted) solutions that
are appropriate to (3.3.36) produce

< J>=<xTx> + <n'n>=N+M-K, (3.6.24)

with an actual value consistent with a x2 probability density, and the values
of the individual terms of J should, as previously discussed, prove consistent
with a x? distribution. Note that the number of degrees of freedom, v, in
J would be approximately N + M — K, where K is the rank of E. (Draper
& Smith, 1982, Chapters 2 and 3 discuss such problems in detail.)

8.6.2.1 Use of Basis Functions

A superﬁciaﬂy different way of dealing with prior statistical information is
often commonly used. Suppose that the indices of z; refer to a spatial or
temporal position, call it r;, so that z; = z(r;). Then it is often sensible
to consider expanding the unknown x in a set of basis functions, F;—for
example, sines and cosines, Chebyshev polynomials, ordinary polynomials,
etc. One might write

L
z(ri) =Y ajFj(r:)
j=1

or
Fi(r1) Fa(r1) - Fr(r1)
x—Fa, F= Fi(ry) Fa(ra) - Frlr) | m_1q . 07,
Fi(ry) Fa(ry) -+ Folrw)
which, when substituted into (3.3.2), produces
La+n=y, L=EF. (3.6.25)

HTL<M< N, one can convert an underdetermined system into one that is
formally overdetermined and, of course, the reverse is possible as well. More
generally, one transfers the discussion of solution covariance, etc., to the
expansion coefficients o. If there are special conditions applying to X, such
as boundary conditions at certain positions, rp, a choice of basis function
satisfying those conditions could be more convenient than appending them
as additional equations.
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It should be apparent, however, that the solution to (3.6.25) will have a
covariance structure dictated in large part by that contained in the basis
functions chosen; thus, there is no fundamental gain in employing basis
functions although they may be convenient, numerically or otherwise. If
P, denotes the uncertainty of «, then

P = FP,,FT (3.6.26)

is the uncertainty of x.

Example: The underdetermined system

1 1 11x+n_1
1 -1 -1 1 =1l

with noise variance < nnT >’= .011, has a solution, if R;; = I, of
?

% =ET(EET + .01I) 'y = [0+ 0.7 0.5+0.7 05+0.7 0+0.7]7,
fi = [.0025 + 0.002 — .0025 £ 0.002]" .

If the solution was thought to be large scale and smooth, one might use the
covariance

1 .999 .998 .997
999 1 999 .998
998 999 1 999 [’
997 998 999 1

Ra::c =

which produces a solution

x=1[0.18+0.06 0.32+£0.04 0.32+0.04 0.18% 0.05]7,

fi =[4.6x 1074 £6.5x 1075, —0.71 £0.07]",

which has a larger-scale property as desired and a smaller standard error.
If one attempts a solution as a first-order polynomial,

zi=a+br;, 1=0,r9=1r3=2,...,

the system will become two equations in the two unknowns a, b:

=l {2l =)

and if the covariance of a, b is the identity matrix,

[, b] = [4 x 107* 4 0.07, 0.2 +0.04]
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%—[4x 10734007 017004 0.33£002 05+ 0.05)7,

fi = [0.0002 £ 0.0004, —1.00 + 0.0005]7,

which is also large scale and smooth but clearly different than that from
the Gauss-Markov estimator. Although this latter solution has been ob-
tained from a just-determined system, it is not clearly better. If a linear
trend is expected in the solution, then the polynomial expansion is certainly
convenient-although such a structure can be imposed through use of Rao
by specifying a growing variance with 7;. ’

9.6.3 Determining a Mean Value

Let the measurements of the physical quantity continue to be denoted y;
and suppose that each is made up of an unknown large-scale mean m, plus
a deviation from that mean of 6;. Then,

m4;=yi, 1<i<M (3.6.27)

or
Dm+6=y,DF =1 1 1 - 1T, (3.6.28)

and we seek a best estimate, 7, of m. In (3.6.27) or (3.6.28) the unknown
x has become the scalar m, and the deviation of the field from its mean is
the noise, that is, = n, whose true mean is zero. The problem is evidently
a special case of the use of basis functions, in which only one function-a
zeroth-order polynomial, m—is retained.

Set Ry = Cpn = < 00T >. If, for example, we were looking for a large-
scale mean temperature in a field of oceanic mesoscale eddies, then Ry, is
the sum of the covariance of the eddy field plus that of observational errors
and any other fields contributing to the difference between y; and the true
mean m. To be general, suppose Rzz = < m? > = mj and from (3.6.20),

1 ! |
m = {—2 + DTR;,{D} DTR}y
mo
1
= DTR;} 3.6.29
1/m2 + DTR;aD ny (3.6.29)
i=0=y—Dm (3.6.30)
(DTR,,!D is ascalar). The expected uncertainty of this estimate is (3.6.22),
P= { L DTR‘ID}—l = ! (3.6.31)
~ \mi e " 1/m2+DTR;D o
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As m — oo, Equations (3.6.29)—(3.6.31) become the same expressions given
by Bretherton, Davis, & Fandry (1976) for the mean of a field.

The estimates may appear somewhat unfamiliar; they reduce to more
common expressions in certain limits. Let the #; be uncorrelated, with
uniform variance 02; R, is then diagonal and (3.6.29) reduces to

1
N = = 3.6.32
" (1/m3 + M/a?) JQZyZ 02+Mm2zy“ ( )

where the relations DD = M, DTy = Ziﬂil y; were used. The expected
value of the estimate is

~ m% M m2

that is, it is biased, as inferred above, unless < y; > = 0, implying m = 0.
P becomes

1 o?m}
= = : 3.6.34
1/m3+ M/o? o2 + Mmk ( )
Under the further assumption that m3 — oo,
1 M
=1
P=d%/M, (3.6.36)

which are the ordinary average and its variance [the latter expression is the
well-known square root of M rule for the standard deviation of an average-
see Equation (3.5.27)]; < m > in (3.6.35) is readily seen to be the true
mean, but (3.6.29) is biased. However, the magnitude of (3.6.36) always
exceeds that of (3.6.34)—acceptance of bias in the estimate (3.6.32) reduces
the uncertainty of the result—a common trade-off in estimation problems.

Equations (3.6.29)—(3.6.31) are the general estimation rule-accounting
through R, for correlations in the observations and their irregular dis-
tribution. Because many samples are not independent, (3.6.34) or (3.6.36)
may be extremely optimistic. Equations (3.6.29)—(3.6.31) give the appropri-
ate expression for the variance when the data are correlated (that is, when
there are fewer degrees of freedom than the number of sample points). On
the other hand, knowledge of the covariance structure of the noise can be
exploited to reduce the uncertainty of the mean: Recall the reduced errors
[Equation (3.4.118)] when the noise was known to be strongly positively
correlated, thus permitting its reduction by subtraction.
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The use of the prior estimate, m3, is interesting. Letting m2 go to infinity
does not mean that an infinite mean is expected [(3.6.35) is finite]. This
limit is merely a statement that there is no information whatever, before we
start, as to the size of the true average-it could be arbitrarily large. Such a
situation is, of course, unlikely, and even though we might choose not to use
information concerning the probable size of the solution, we should remain
aware that we could do so (the importance of the prior estimate diminishes
as M grows—so that with an infinite amount of data it has no effect at all
on the estimate).

It is very important not to be tempted into making a first estimate of ma
by using (3.6.35), substituting into (3.6.32), thinking to reduce the error
variance. For the Gauss-Markov theorem to be valid, the prior information
must be truly independent of the data being used. If a prior estimate of m
itself is available rather than just its mean square, the problem should be
reformulated as one for the estimate of the perturbation about this value.

It is quite common in mapping and interpolation problems (taken up
immediately below), to first estimate the mean of the field, to remove it,
and then to map the residuals—here called 6. Such a procedure is a special
case of a methodology often called (particularly in the geological literature)
kriging,'° which is discussed in Chapter 5.

3.6.4 Making a Map; Sampling, Interpolation,
and Objective Mapping

A familiar oceanographic problem is to draw a set of contours from data
that may have been observed irregularly in space. Such maps are usually
the first step in understanding what one is measuring. A somewhat more
sophisticated use of a map is to produce a regular grid of values to use in
a numerical ocean model. An example with an irregular data distribution
is shown in Figure 2-14. Ships observe the windfield wherever they happen
to be, and the data are interpolated by investigators onto regular grids that
are then used to drive model oceans.

Obtaining numbers on a regular grid from irregularly distributed obser-
vations is basically an interpolation or mapping problem-and as such may
‘seem somewhat trivial. But it is far from trivial when one adds the require-
ment that the map should be accompanied by a useful estimate of the error
of the values calculated at a grid point. For regions of a map surrounded by
densely spaced data, the gridded value can be expected to be more accurate

10 pronounced with a soft “g.?
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than at a location effectively extrapolated from distant data points. (But
what does one mean by “distant?”) When using a map with a complex
model, such inhomogeneities in the accuracy may be extremely important—
as calculations could be in error because of large mapping errors in distant
parts of the domain. Bretherton et al. (1976) introduced the subject of
quantitative mapmaking into oceanography, and the book by Thiebaux and
Pedder (1987) is devoted to the problem.

3.6.4.1 Sampling

The first question that must be addressed is whether the sampling of the
field is adequate to make a useful map. This subject is a large and interesting
one in its own right, and there are a number of useful references, including
Bracewell (1978), Freeman (1965), Jerri (1977), or Butzer and Stens (1992),
and we can only outline the basic ideas.

The simplest and most fundamental idea derives from consideration of
a one-dimensional continuous function f(g) where q is an arbitrary inde-
pendent variable, usually either time or space, and f (¢) is supposed to be
sampled uniformly at intervals Aq an infinite number of times (see Fig-
ure 3-12a) to produce the infinite set of sample values {f(nAgq)}, —oo <
n < co. The sampling theorem, or sometimes the Shannon-Whittaker Sam-
pling Theorem!! is a statement of necessary and sufficient conditions so
that f(q) can be perfectly reconstructable from the sample values. Let the
Fourier transform of f(gq) be defined as

f(r) = / 0:0 flg)e*™dg. (3.6.37)

The sampling theorem asserts that a necessary and sufficient condition to
perfectly reconstruct f(g) from its samples is that

If(r) =0, |r|>1/(2Aq). (3.6.38)

The theorem produces an explicit formula for the reconstruction, the Shannon-
Whittaker formula, which is

sin[(27/2Aq)(g — nAg)]
(2m/2Aq)(q — nlAq)
Mathematically, the Shannon-Whittaker theorem is surprising because it

provides a condition under which a function at an uncountable infinity of
points can be perfectly reconstructed from information only at a countable

Q=S F(ng (3.6.39)

n=—oo

infinity of them. For present purposes, an intuitive interpretation is all

1 In the Russian literature, Kotel’nikov’s theorem.



192

Figure 3—12. (a) Classical
aliasing of a curve by under-
sampling. The original func-
tion is shown by the solid line.
Samples every 10 time units
(open circles) do an adequate
job of capturing the variabil-
ity in the function. But if the
sampling interval is increased
to 30 time units, the original
function is grossly misrepre-
sented (dashed line), and an
attempt to calculate the deri-
vative of the original curve
from the coarse sampling
interval would prove disas-
trously wrong. (b) Uniformly
undersampled high frequen-
cies or wavenumbers masquer-
ade (alias) as lower frequen-
cies or wavenumbers accord-
ing to the Equation (3.6.40).
The net result is a folding of

f(r)
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the frequencies outside the
baseband [Equation (3.6.41)]
into apparent frequencies
within the baseband. Here, a
function f(g) with Fourier
transform f(r) is sampled at
intervals Aqg. The Fourier
transform of the sampled
function, fs(r), sums con-
tributions from the original

Fourier transform as

fulr) = £(r) + Fr £1/Aq) +
f(r£2/Aq)+ - (dotted
points), which is potentially
radically different from f (r).
Points denoted “x” are
aliased into a negative value
0 >r > —1/2Ag—for example,
(r+1/2Aq) —1/Aq =

r —1/2Aq.

we seek, and this is perhaps best done by considering a special case in
which the conditions of the theorem are violated. Figure 3-12a displays an
undersample curve. It is quite clear that there is at least one other curve,
the one depicted with the broken line, which is completely consistent with
all the sample points and which cannot be distinguished from it. If a pure
sinusoid of frequency 7o is sampled at intervals Ag, Ag > 1 /2rg, a little
thought shows that the apparent frequency of this new sinusoid is

re =70+ Aﬁq (3.6.40)
such that
1
< —, .6.41
|fra|_2Aq (3.6.41)

The samples cannot distinguish the true high-frequency sinusoid from a low
‘frequency one, and the high frequency can be said to masquerade or alias as
the lower-frequency one.'? The Fourier transform of a sampled function is

12 Aliasing is familiar as the stroboscope effect. Recall the appearance of the spokes of a
wagon wheel in the movies. The spokes can appear to stand still, or move slowly forward
or backward, depending upon the camera shutter speed relative to the true rate at which
the spokes revolve.



3.6 Gauss-Markov Estimation, Mapmaking, Simultaneous Fquations 193

easily seen to be periodic with period 1/Agq in the transform domain-that is,
in the r space (Bracewell, 1978, and Hamming, 1973, have particularly clear
discussions). Because of this periodicity, there is no point in computing its
values for frequencies outside |r| < 1/2Aq (we make the convention that
this baseband, i.e., the fundamental interval for computation, is symmetric
about 7 = 0, over a distance 1/2Agq; see Figure 3-12b). Frequencies of
absolute value larger than 1/2Agq, the so-called Nyquist frequency, cannot
be distinguished from those in the baseband, and they alias into it.

The consequences of aliasing range from the negligible to the disastrous.
A simple, possibly trivial, example is that of the principal lunar tide, usually
labeled M, with a period of 12.42 hours, 7 = 1.932 cycles/day. An observer
measures the height of sea level at a fixed time, say 10 A.M. each day so
that Ag = 1 day. Applying the formula (3.6.40), the apparent frequency of
the tide will be .0676 cycles/day for a period of about 14.8 days. To the
extent that the observer understands what is going on, he will not conclude
that the principal lunar tide has a period of 14.8 days but will realize that
he can compute the true period through (3.6.40) from the apparent one.
But if he did not understand what was happening, he might produce some
bizarre theory.!3

Few situations are this simple. Consider Figure 2-2j, which shows a
section of silicate across the North Atlantic Ocean. The observed varia-
tion includes all wavenumbers; an estimate of the wavenumber spectrum is
displayed in Figure 3-13. (Spectra are discussed in many textbooks, e.g.,
Priestley, 1981. For present purposes it can be regarded as simply a nu-
merical estimate of the wavenumber content of Figure 2-2i.) As one thins
the sampling, the higher wavenumbers will be aliased into lower ones. Be-
cause the distribution is dominated by the low wavenumbers, the effects of
this aliasing are perhaps not readily apparent to the eye. But for use in
numerical models, one almost inevitably must differentiate observed fields
one or more times. Consider what would happen if one tried to estimate
the derivative of the curve in Figure 3—12a from the samples: The numeri-
cal values of the aliased data would be radically different from the correct
values. It is this type of concern that leads one to single out the aliasing
problem for special attention.

The reader may object that the Shannon-Whittaker theorem applies only
to an infinite number of perfect samples and that one never has either per-

13 There is a story, perhaps apocryphal, that one investigator was measuring the mass flux
of the Gulf Stream at a fixed time each day. He was preparing to publish the exciting
discovery that there was a strong 14-day periodicity to the flow, before someone pointed
out to him that he was aliasing the tidal currents with a 12.42-hour period.
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Figure 3—13. Estimated
wavenumber spectrum of the
silicate distribution along
25°N in the Atlantic, at three
different depths. Such spectra
are said to be red, because the
energy increases as the wave-
length increases (wavenumber
decreases). It is the large-
scale structure that is most
visible in sections and maps.
But if the field is differenti-
ated, as it must be to use in
conservation equations, the
large-scale structures are
suppressed, and the high
wavenumbers—short scales—
remain and are subject to
aliases from inadequate
sampling.
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fect samples or an infinite number of them. In particular, it is true that
if the duration of the data in the ¢ domain is finite, then it is impossi-
ble for the Fourier transform to vanish over any finite interval (it follows
from the so-called Paley-Wiener criterion and is usually stated in the form
that “timelimited signals cannot be bandlimited”). Nonetheless, the rule
of thumb that results from (3.6.39) has been found to be quite a good one.
The deviations from the assumptions of the theorem are usually dealt with
by asserting that sampling should be done so that

Agq < 1/2r9. (3.6.42)

Many extensions and variations of the sampling theorem exist—taking ac-
count of the finite time duration (e.g., see Landau & Pollak, 1962), the use
of burst-sampling and known-function derivatives, etc. (see Freeman, 1965;
Jerri, 1977). Most of these variations are sensitive to noise. There are also
extensions to multiple dimensions (e.g., Petersen & Middleton, 1962), which
‘are required for mapmaking purposes. (An application, with discussion of
the noise sensitivity, can be found in Wunsch, 1989.)

The subject will be left here for present purposes, with the comment that
sampling theorems can be unforgiving-that is, once a function is undersam-
pled, and unless the aliased signal is as simple as a known tidal contribution,
it will be mappable, and differentiable, etc., but perhaps in a way that can
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be disastrously misleading. Consideration of sampling is critical to any
discussion of field data.

3.6.5 One-Dimensional Interpolation

Supposing that the field has been adequately sampled, consider using only
two observations [y1 w2]T = [z1 + n1  z2 + na]T located at positions
[r1 T'Q]T where n; are the observation noise. We require an estimate of
z(7), where 71 < 7 < r2. The formula (3.6.39) is unusable; there are only
two noisy observations, not an infinite number of perfect ones. We could
try instead using linear interpolation:

Z(7) y(r1) +

If there are data points, r;, 1 < i < M, then another possibility is Aitken-
Lagrange interpolation (Davis & Polonsky, 1965):

_ fr2 =7 re — 7| y(rs) (3.6.43)

re — 7] lre — 1]

M
(7) = > 1i(7)ys (3.6.44)
| j=1

Ly = o) o)) o) g
(rj —r1) -+ (rj = rj—1)(rj —rja) - (rj = Tm1)
Figure 3-14 shows these two examples.

Equation (3.6.43), (3.6.44)—(3.6.45) are only two of many possible inter-
polation formulas. When would one be better than the other? How good are
the estimates? To answer these questions, let us take a different tack and
employ the Gauss-Markov theorem, assuming we know something about the

necessary covariances.
 Suppose either < £ > =< n > = 0 or that a known value has been
removed from both (this just keeps our notation a bit simpler). Then,

Ry (7, 75) = < z(F)y(ry) > = < z(7)(z(r;) +n(rj)) >

= Ruu(F, 1) (3.6.46)
Ryy(ri, 75) = < (x(ri) + n(ri))(x(r;) +n(ry)) >
= Ram(T‘z', ’r‘j) + Rnn(Ti, ’I“j) , (3647)

where it has been assumed that < z(r)n(q) > =0 for all 7, q.
From (3.6.9), the best linear interpolator is

M
% =By, B(7, i)=Y Ruu(f, ) {Roo + Run}y; (3.6.48)
j=1
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Figure 3-14. In the upper
and middle panels, the solid
curve represents the “true”
values, generated as a func-
tion having covariance

S = 100 exp(—r?/30). “Data”
were then generated at every
second point (1,3,...) with
pseudorandom white noise of
variance 1. The upper panel
shows linear interpolation of
the data. Notice that the
result interpolates literally,
passing exactly through the
point. The middle panel
shows the result of using the
Gauss-Markov estimate on
the same pseudo-data. Esti-
mated points do not agree
exactly with the data, and an
estimate of the expected one
standard error is shown-per-
haps the most important
difference from the upper
panel. Estimate and truth are
generally consistent within
two standard errors. The
lowest panel displays the
noise estimate at each data
point from the Gauss-Markov
estimate and appears, visu-
ally, suitably unstructured.
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({Rze + Rnn}j_il means the ji element of the inverse matrix), and the min-
imum possible error that results is

M M
P(7, 7) = Roo(F, 7) =Y > Raa (7, 7)) {Ros+Rnn}j; Rae(ri, 7) (3.6.49)
ig

[here Ry, P(7, ) are both scalars], and i = y — X.

Like the linear interpolation or the Aitken-Lagrange formula, or most
other interpolation formulas, the optimal interpolator is simply a linear .
combination of the data. If any other set of weights B is chosen, then the
interpolation is not as good in the mean-square error sense as it could be;
the error of any such scheme can be obtained by substituting it into (3.6.7)
and evaluating the result (the true covariances still need to be known.)

Looking back now at the two familiar formulas (3.6.43)—(3.6.45), it is clear
what is happening: They represent a choice of B. Unless the covariance is
such as to produce one of the two sets of weights as the optimum choice,
neither Aitken-Lagrange nor linear (nor any other common choice, like a
spline) is the best one could do. Alternatively, if either of (3.6.43), (3.6.44)-
(3.6.45) was thought to be the best one, they are equivalent to specifying
the solution and noise covariances.

If interpolation is done for two points 7, 73, the error of the two esti-
mates will usually be correlated and represented by P (7, 7). Knowledge
of the correlations between the errors in different interpolated points is of-
ten essential—for example, if one wishes to use uniformly spaced grid values
so as to make estimates of derivatives of z. Such derivatives might be nu-
merically meaningless if the mapping errors are small scale (relative to the
grid spacing) and of large amplitude. But if the mapping errors are large
scale compared to the grid, the derivatives may tend to remove the error
and produce better estimates than for x itself.

Both linear and Aitken-Lagrange weights will produce estimates that are
exactly equal to the observed values if 7, = r;—that is, on the data points
themselves. Such a result is characteristic of true interpolation. In contrast,
the Gauss-Markov estimate will differ from the data values at the data
points, because the estimator attempts to reduce the noise in the data by
averaging over all observations. The Gauss-Markov estimate is thus not a
true interpolator; it is instead a smoother (smoothers will be encountered
again in Chapter 6). One can recover true interpolation from the Gauss-
Markov estimate if |Ry,|| — 0, but being conscious that the matrix being
inverted in (3.6.48) and (3.6.49) can become singular. If no noise is present,
then the observed value is the correct one to use at a data point. The
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weights B can be complicated if there is any structure at all in either of
R.s, Rynn. The estimator takes explicit account of the expected spatial
structure of both x and n to weight the data in such a way as to most
effectively kill the noise relative to the signal. One is guaranteed that no
other linear filter can do better.

If |Runll > |Reell, X — 0, manifesting the bias in the estimator—a bias
introduced in the Gauss-Markov estimators so as to minimize the uncer-
tainty (minimum variance about the true value). Thus, interpolated values
tend toward zero, particularly far from the data points. For this reason, it
is common to use expressions such as (3.6.29), (3.6.30) to first remove the
mean, prior to mapping the residual, adding the estimated mean back in
afterward. The interpolated values of the residuals are unbiased, because
their true mean is nearly zero. Rigorous estimates of P for this approach
require some care, as the mapped residuals contain variances owing to the
uncertainty of the estimated mean (e.g., see Ripley, 1981, Section 5.2), but
the corrections are commonly ignored.

The noise-free case would not normally be mapped with the Gauss-Markov
estimator, and the presence of a realistic R,,, usually prevents singularity
in Ry + Rnn. Nonetheless, the general possibility of singularity should
be examined and interpreted. This sum matrix is symmetric, and its SVD
reduces to the symmetric form, (3.4.37),

R,y + Rpn = UAUT . (3.6.50)

If the sum covariance is positive—deﬁnite, A will be square with K = M,
and the inverse will exist. If the sum covariance is not positive-definite but
is only semidefinite, one or more of its singular values will vanish. The
meaning is that there are possible structures in the data that have been
assigned to neither the noise field nor the solution field. This situation is
realistic if one is truly confident that y does not contain such structures. In
that case, the solution

% = Rz (Rez + Ran) 'y = R.,(UATIUT)y (3.6.51)

will have components of the form 0/0, the denominator corresponding to the
zero singular values and the numerator to the absent, impossible, structures
‘of y. One can arrange that the ratio of these terms should be set to zero
(e.g., by using the SVD). But such a delicate balance is not necessary. If one
simply adds a small white-noise covariance to Ryz+Rnn — Rag +R €1,
one is assured by the discussion of tapering that Rz + Rpp is no longer
singular—all structures in the field being assigned to either the noise or the
solution (or in part to both).
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Anyone using a Gauss-Markov estimator to make maps must do checks
that the result is consistent with the prior estimates of Rzz, Rpn. Such
checks include determining whether the difference between the mapped val-
ues at the data points and the observed values have numerical values con-
sistent with the assumed noise variance; a further check involves the sample
autocovariance of fi and its test against R, (see books on regression for
such tests). The mapped field should also have a variance and covariance
consistent with the prior estimate R,. If these tests are not passed, the
entire result should be rejected.

A variant mapping problem is the construction of a streamfunction, ¥(¥;),
on a uniform grid, ¥;, from noisy measurements of a velocity field [u(r;),
v(r;)] at a collection of data points, r;. One has then a set of relations of
the form

U(Fq) — U(Fy) = Ayu(ry) + n(ry)
U(rs) — Uty ) = —Azv(rg) + n(ry)

where Tq, Ty are the grid points bracketing observation point r; in the
y—direction, over a distance Ay, and Ts, Ty bracket point ry in the
z—direction over a distance Az, and are just another version of the problem
of estimating the solution to a set of simultaneous equations.

3.6.6 Higher Dimensional Mapping

We can now immediately write down the optimal interpolation formulas for
an arbitrary distribution of data in two or more dimensions. Let the po-
sitions where data are measured be the set r; with measured value y(r;),
containing noise n. The mean value of the field is first estimated and sub-
tracted from the measurements, and we proceed as though the true mean
were zero. This problem was discussed by Bretherton et al. (1976); in me-
teorology, the method is associated with Gandin (1965). Fundamentally, it
is nothing more than an application of the Gauss-Markov theorem in two
(most commonly) dimensions. Fuller discussions may be found in Thiebaux
and Pedder (1987) and Daley (1991).

One proceeds exactly as in the case where the positions are scalars, mini-
mizing the expected mean-square difference between the estimated and the
true field x(¥,). The result is (3.6.48), (3.6.49) except that now everything,
is a function of the vector positions. If the field being mapped is also a vec-
tor (e.g., two components of velocity) with known covariances between the
two components, then the elements of B become matrices. The observations
could also be vectors at each point.
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An example of a two-dimensional map is shown in Figure 3-15a: The data
points are the dots, while estimates of y on the uniform grid were wanted.
The prior noise was described as < n > =0, Ry, = < nyn; >= aﬁéij,
02 =1, and the true field covariance was < x > = 0, Rgz = < x(ry)x(r;) >
= Pyexp —|r;—r;|?>/La, Py = 25, Lo = 9. Figure 3-15b shows the estimated
values and 3—-15c¢ the error variance estimate of the mapped values. Far from
the data points, the estimated values are O-that is, the mapped field goes
asymptotically to the estimated true mean, and the error variance goes to
the full value of 25, which cannot be exceeded. That is to say, when mapping
far from any data point, the only real information available is provided by
the prior statistics—the mean is 0, and the variance about that mean is 25.
So the expected uncertainty of the mapped field in the absence of data
cannot exceed the prior estimate of how far from the mean the true value
is likely to be, with the best estimate being the mean itself.

The mapped field has a complex error structure even in the vicinity of
the data points. Should a model be driven by this mapped field, one would
need to make some provision in the model for accounting for the spatial
change in the expected errors of this forcing.

In practice, most published objective mapping (often called OI for objec-
tive interpolation) has been based upon simple analytical statements of the
covariances Rz, Rny, as used in the example; that is, they are commonly
assumed to be spatially stationary and isotropic (depending on |r; — rj]
and not upon the two positions separately nor upon their orientation). The
assumption is often qualitatively reasonable, but much of the ocean circu-
lation is neither spatially stationary nor isotropic. Use of analytic forms
removes the necessity for finding, storing, and computing with the poten-
tially very large M x M data covariance matrices in which hypothetically
every data or grid point has a different covariance with every other data or
grid point. But the analytical convenience often distorts the solutions (see
the discussion in Fukumori, Martel, & Wunsch, 1991).

3.6.7 Linear Combinations of Estimates
and Mapping Derivatives

A common problem in setting up a general circulation model is to specify
the fields of quantities like temperature, salinity, etc., on a regular model
grid. One also often must specify the derivatives of these fields for use in
equations like that of the advection-diffusion equation,

%f— +v-VC = KV*C (3.6.52)



Figure 3-15. (a) Data

oints are assumed to be
available at the locations
marked with a solid dot and
the values shown. The esti-
mated field values on the reg-
ular grid (integer values of
latitude and longitude) emu-
late what happens when data
are interpolated for purposes
of driving a model. The
solution covariance was
R(|ri —4]) =
925 exp(—|r; — r;|/9). The
observation noise was
assumed to be white of vari-
ance unity. Far from the
data, the mapping tends to-
ward the expected value
(here, zero) because no other
information about the correct
value is available. (b) Stan-
dard error +/P;; for the map-
ped field shown in (a). The
values tend to 5—that is,
v/25—far from the data points,
as the largest possible square
error can never exceed the
prior estimate of 25. In gen-
eral, the expected errors are
smallest near the data points.
(c) One of the rows of P,
corresponding to the grid
point on which the contours
are centered (39°N, 282°E),
displaying the correlations
that occur in the expected
errors of the mapped field at
neighboring grid points. The
variance was normalized to 1
for plotting.
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where C is any scalar field of interest. Suppose one wished to estimate a
derivative as a one-sided difference,

9C(f1) _ C(i1) = C(Fa)

or 71 — T2

(3.6.53)

Then one might think simply to subtract the two estimates made from
Equation (3.6.48), producing
0C (1)
or
(a sum on j and k is implied).
Alternatively, suppose we tried to estimate 8C /0r directly from (3.6.5),
using x = C(r1) — C(r2).- Ryy = R, + Rnn, which describes the data,
does not change. Ry, does change:

R,, = < (C(71) — C(72))(C(r;) + n(r5)) >
= Rm;(Fl, T‘j) — Rmm(’fz, ’r‘j) , (3.6.55)

Ar ~ (Reg(F1, ) — Raa(F2, 7)) (Rao + Rnn);,jy(rk) (3.6.54)

which when substituted into (3.6.9) produces (3.6.54). Thus, the optimal
map of the finite difference field is simply the difference of the mapped values.
More generally, the optimally mapped value of any linear combination of
the values is that linear combination of the maps (see Luenberger, 1969).
Of particular importance is the estimate of an arbitrary linear combination
of elements of %, such as the finite difference derivative just considered, and
the essential computation of their uncertainty. Consider any estimate X,
and a weighted sum

H=a"% (3.6.56)

where the constant vector a may be mostly zeros. The expected value of
the sum is

<H>=aT <x>, (3.6.57)

whose bias depends directly on that of X. If the uncertainty of X is P, then
one has immediately

<(H-H)?>= al < (x—x)x—-x)T >a= alPa. (3.6.58)

3.7 Improving Solutions Recursively

An important idea in both least-squares approximation and estimation the-
ory derives from the need to improve the result of an earlier computation
with the arrival of some new data. In what follows, we initially will use
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the language of least squares, but because of the coincidence of the results
for least squares with appropriate weight matrices, and minimum variance
estimation, we will obtain the correct result for estimation problems, too.

Suppose we have solved the system (3.3.2), using any one of the proce-
dures discussed above. Because we will add data, some extra notation is
needed. Rewrite (3.3.2) as

E(1)x(1) + n(1) = y(1) (3.7.1)

where the noise n(1) has zero mean and covariance matrix R, (1). Let the -
estimate of the solution to (3.7.1) from one of the estimators be written
as x(1), with uncertainty P(1). As a specific example, suppose (3.7.1) is
full-rank overdetermined and was solved using row-weighted least-squares
solution as

%(1) = (E(1) Ry (1) E1) 'E(L) T Rpn (1) "y (1) (3.7.2)

with corresponding P(1) (no column weights are used because we know they
are irrelevant for a full-rank overdetermined problem).

Some new observations, y(2), are obtained, with the error covariance of
the new observations given by R,,,(2) so that the problem is now

B(1)|__ [o()] _ [y()
{E@)} y ln(2>} =y (37.3)
where x is the same unknown. We assume < n(2) > = 0 and
<n()n2)7T > =0, (3.7.4)

that is, no correlation of the old and new measurement error (this assump-
tion is very important, and particular attention is called to it). A solution
to (3.7.3) should give a better estimate of x than (3.7.1) alone because more
observations are available. It is sensible to row weight the concatenated set
to

{RmurmE(l)}H annurT/?n(l)} _ {Rnnu)*myu)

R (2)~T/2E(2) Rnn(2)~T/2n(2) R (2)-T/2y(2)| (3.7.5)

Recursive weighted least squares seeks the solution to (3.7.5) without invert-
ing the new, larger matrix by taking advantage of the existing knowledge
of x already in hand from (3.7.2). Because of (3.7.4), the objective function
corresponding to finding the minimum weighted error norm is

J=[y(1) = E()x]" Rpn (1) [y(1) — E(1)x]
+[y(2) — E(2)x] Ran(2) 7" [y(2) — E(2)x] . (3.7.6)
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Taking the derivatives with respect to x, the least-squares solution is

= {B(1)"Rn(1)'E(1) + E(2) Rn(2) 'E @} x
(B Ran() 7y (1) + EQ Ran() Y@} . (B77)

But one can manipulate (3.7.7) into (e.g., see Brogan, 1985, or Stengel, 1986)

%(2) = (1) + P(UEQR)T [EQPOER)T + Run(2)]  y(2) — BQ)Z(D)
=x(1) + K(2) [y(2) — E(2)%(1)] (3.7.8)
where
K(2) = P(VE(2)” [EQ)P(DEQ)T + Run(2)] - (3.7.9)
i(2) = y(2) — E(2)x(2), (3.7.10)
and this improved estimate has uncertainty
P(2) =P(1) - K(2)E(2)P(1). (3.7.11)

These last equations are algebraically identical to the alternate forms
found from the matrix inversion lemma (3.1.25):

X(2) = (B2 Ron(2) ' B)) ™ {0+ [EQ) Ron(2E@)] | %()

+ P(l){P(1)+ [E(z)TRnn(z)—lE(z)]_1}_1[E(2)TRM(2)—1E(2)]_1 x

E(2)R..(2)"'y(2), (3.7.12)
-1
P(2)={P(1)' + E(2) R.:(2)'EQ)} (3.7.13)

The two different boxed sets differ only in the matrix sizes to be inverted,
and a choice between them is typically based upon computational loads (in
some large problems, matrix inversion may prove less onerous than maftrix
‘multiplication).

The solution is just the least-squares solution to the full set but rearranged
after a bit of algebra. The original data, y(1), and coefficient matrix, E(1),
have disappeared, to be replaced by the first solution x(1) and its uncer-
tainty P(1). That is to say, one need not retain the original data and E(1)
for the new solution to be computed. Furthermore, because the new solu-
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tion depends only upon %X(1), P(1), the particular methodology originally
employed for obtaining them is irrelevant (i.e., they might have actually
been obtained from an educated guess or through some arbitrarily complex
model computation). Finally, the structure of the improved solution (3.7.8)
is interesting and suggestive. It is made up of two terms: the previous
estimate plus a term proportional to the difference between the new obser-
vations y(2), and a prediction of what those observations should have been
were the first estimate the wholly correct one and the new observations
perfect. It thus has the form of a predictor-corrector.

The difference between the prediction and the forecast can be called the
prediction error, but recall that there is observational noise in y(2). The new
estimate is a weighted average of this difference and the prior estimate, with
the weighting depending upon the details of the uncertainty of prior estimate
and new data. The behavior of the updated estimate is worth understanding
in various limits. For example, suppose the initial uncertainty estimate is
diagonal, P(1) = A2I, or that one rotates x into a new space of uncorrelated
uncertainty. Then

K(2) = EQ2)T(E(2)E?2)T + Rnn(2)/A2) 7", (3.7.14)

If the norm of R, (2) is small compared to that of A?I and if (to be specific
only) the second set of observations is by itself full-rank underdetermined,

then

K(2) - E@2)T(E@QE@2)T)™

and
%(2) = (1) + EQ@)T(EQE?2)") [y (2) - E@)%(1)]

- [1- BT (BQEQRT) EQ@)]x(1) + BQ)(BEER)T) y(2)

(3.7.15)
where [I — E(2)T(E(2)E(2)T)E(2)7!] will be recognized as the nullspace
projector (3.4.114) of E(2). The update is replacing the first estimate by the
estimate from the second set of observations, which were deemed perfect, but
keeping unchanged any components of X(1) in the nullspace of E(2) because
no new information is available about them. Should the new observations be
fully determined and perfect, then the previous estimate is wholly replaced
by the estimate made from the new, low-noise observations.

At the opposite extreme, when the new observations are very noisy com-
pared to the previous ones, K(2) will be comparatively small, and the pre-
vious estimate is left largely unchanged. The general case represents a
weighted average of the previous and new data, the weighting depending
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both upon the relative noise in each and upon the structure of the observa-
tions relative to the structure of x.

The matrix being inverted in (3.7.8)~(3.7.11) is the sum of the mea-
surement error covariance Rnn(2), and the error covariance of the “fore-
cast” E(2)%(1). To see this, let ~(1) be the error component in x(1),
which by definition has covariance < ~v(1)y(1)T > = P(1). Then the ex-
pected covariance of the error of prediction is < E(2)7(1)7(1)TE(2)T > =
E(2)P(1)E(2)”, which appears in K (2). Because of the assumptions (3.7.4)
and < v(1)z(1)T > = 0, it follows that ‘

< y()y(@) — BQ)%(1)] > = 0. (3.7.16)

That is, the innovation, y(2) — E(2)%(1), is uncorrelated with the previous
measurement.

It is useful to notice that Equations (3.5.11)—(3.5.12), the solution to
the least-squares problem subject to certain perfect constraints imposed by
a Lagrange multiplier, can be recovered from (3.7.8)—(3.7.13) by putting
E2) = A, y(2) =q,P(1) = (ETE)™!, Rnn(2) — 0. That is, this earlier
solution can be conceived of as having been obtained by first solving the
conventional least-squares problem and then being modified by the later
information that Ax = q with very high accuracy.

Finally, suppose given (1), ¥(1) that we regard Ay = y(2) — E(2)%(1)
as the discrepancy between an initial estimate of x and what the new data
suggest is correct. Putting Ax = %(2)—%(1), we have an ordinary estimation
problem with < Ax AxT > = P(1),

E(2)Ax +n(2) = Ay.

The solution by the Gauss-Markov estimate (3.6.16)—(3.6.18) (or least
squares) is

A% = P(EQ)T (BRP(DE®)" + Rnn(2) A,

which if added to %(1) produces (3.7.8).

The possibility of a recursion based on either of (3.7.8)-(3.7.11) or (3.7.12),
(3.7.13) should now be obvious—all argument—1 variables being replaced by
argument—2 variables, which in turn are replaced by argument—3 variables,

"etc. A practical example, as applied to altimetric data, may be seen in
Wunsch (1991).

The computational load of the recursive solution needs to be addressed.
If all of the constraints are available at once and used, the solution can be
found as in any least-squares problem without ever computing the solution
uncertainty (although its utility without the uncertainty may be doubted).
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But if the constraints are divided and used in two or more groups, then
the uncertainty must be computed one or more times to carry out the im-
provement. In general, owing to the need to compute the uncertainties, it
is more efficient to use all of the constraints at once (if available, and if the
computer can handle them) than it is to divide them into groups—unless
special structures are present in the E(t). Oceanography has a particular
need for recursive methods, however. The global-scale data flow is not well
organized, and data tend to drift in to scientists over lengthy periods of
time. It is a considerable advantage to be able to improve estimates when '
previously unavailable data finally appear.

The comparatively simple interpretation of the recursive, weighted least-
squares problem will be used in Chapter 6 to derive the Kalman filter and
suboptimal filters in a very simple form. It also becomes the key to under-
standing assimilation schemes such as nudging, forcing to climatology, and
robust diagnostic methods.

If the initial set of equations (3.7.1) is actually underdetermined and
should it have been solved using the SVD, one must be careful that P(1)
includes the estimated error owing to the missing nullspace. Otherwise,
these elements would be assigned zero error variance, and the new data
could never affect them.

Consider another special case. Let there be a prior best estimate of the
solution, which we will call x(0), and which is assumed to be zero. Specify
an initial uncertainty (most often diagonal),

and assuming a true mean of zero, treat this estimate and its uncertainty as
the first set of data, replacing all the “1” estimates with those now relabeled
‘(O” .

%(1) = 0+ K(1) [y(1) — E(1)0] , (3.7.17)
K(1) = P(OE(L)T [E()PO)ED)T + Ran(1)]
P(1) = P(0) — K(1)E(1)P(0). (3.7.18)

The objective mapping estimate discussed in (3.6.16)—(3.6.18) is identical
with (3.7.17)—(3.7.18). There, the prior estimate of the field at an interpola-
tion point is 0; the prior uncertainty of the field corresponds to its estimated
second moments, R,;, and the observation noise covariance is R,,,,. K in-
terpolates from the data points r; to the grid points ¥,. Thus, as asserted,
the Gauss-Markov mapping estimate coincides with the least-squares one,
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and we can regard objective mapping as a special case of recursive least
squares.

Let us confirm more generally that the recursive least-squares result is
identical to a recursive estimation procedure. Suppose there exist two esti-
mates of an unknown vector X, denoted Xq, Xp With estimated uncertainties
P., Py, respectively. They are either unbiased or have the same bias—that
is, < Xg > =< Xp > = xp. How should the two be combined to give a third
estimate, X, with minimum error? Try a linear combination

%t = Lg%, + LpXp . (3.7.19)

Tf the new estimate is to be unbiased or is to retain the prior bias, it follows
that

<%t >=Lg <X > +Lp <Xp > (3.7.20)
or

xg = Loxp + Liyxp
Ly=1-L,. (3.7.21)

Then the uncertainty is

< & —x) & —%)7T > = < (La%q + (I - La)%s — x)(La%a + (I — La)Xp — x)7 >
— LoPoLT + (I— Lo)Py(I—La)" (3.7.22)

where the assumption that the errors in Xq, Xp are uncorrelated has been
used. This expression is positive-definite; minimizing with respect to L,
yields immediately

L, = Po(Pa+ Pp) Y, Ly=Po(Pa+Py) "
The new combined estimate is then
%t = Py(Pa + Pp) %o + Pa(Pa + Pb) ' Xp.
This last expression can be rewritten by adding and subtracting X, as

Xt = ia+Pb(Pa+Pb>‘1ia+Pa(Pa+Pb)—1ib—(Pa+Pb)(Pa+Pb)—1ia

= %o+ Pa(Py +Pp) 7 (X — Xa)- (3.7.23)
The uncertainty of the estimate (3.7.23) is easily evaluated as

pt=(P;l+P; ), (3.7.24)
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which, by straightforward application of the matrix inversion lemma (3.1.24),
is
Pt =P, —P,(P,+Py) " 'P,. (3.7.25)

Equations (3.7.23)—(3.7.25) are the general rules for combining two esti-
mates with uncorrelated errors.

Now suppose that X, and its uncertainty are known and that there are
measurements

E(2)x +n(2) = y(2) (3.7.26) *

with < n(2) > = 0, < n(2)n(2)T > = R,n(2). From this second set
of observations, we estimate the solution, using the Gauss-Markov estima-
tor (3.6.20)—(3.6.22) with no prior estimate of the solution variance-that is,
|IRza| — O-so that

%y = (B2)TRnn(2) " 1EQ2)) "EQ2) TRan(2) " y(2)  (3.7.27)
P = (E(2)TRna(2) 1E(2)) 7" (3.7.28)

Subsituting (3.7.27), (3.7.28) into (3.7.23)—(3.7.25) and again using the ma-

trix inversion lemma gives
%t = %, + PLE(2)T[EQ2)P.E2)T + Rua(2)] ' [y(2) - EQ2)%d], (3.7.29)

which is the same as (3.7.8); thus a recursive minimum variance estimate
coincides with a corresponding weighted least-squares recursion. The covari-
ance may also be confirmed to be (3.7.11). The alternate forms (3.7.12),
(3.7.13) are also correct.

3.8 Estimation from Linear Constraints—A Summary

A number of different procedures for producing estimates of the solution
to a set of noisy simultaneous equations of arbitrary dimension have been
described here. The reader may wonder which of the variants makes the
most sense to use in practice. There is no single best answer because in the
presence of noise one is dealing with a statistical estimation problem, and
one must be guided by model context and goals. A few general remarks
might be helpful.

In any problem where data are to be used to make inferences about physi-
cal parameters, one typically needs some approximate idea of just how large
the solution is likely to be and how large the residuals probably are. In this
nearly agnostic case, where almost nothing else is known, and the problem
is very large, the weighted, tapered least-squares solution (Section 3.3.2)
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is a good first choice—it is easily and efficiently computed and coincides
with the Gauss-Markov and tapered SVD solutions for this situation if the
weight matrices are the appropriate variances. Sparse matrix methods for
its solution exist (e.g., Paige & Saunders, 1982) should that be necessary.
Coincidence with the Gauss-Markov solution means that one can reinter-
pret it as a minimum-variance solution should one wish (and for Gaussian
variables, it is also the maximum likelihood solution).

It is a comparatively easy matter to vary the trade-off parameter, a?

, to
explore the consequences of any errors in specifying the noise and solution
variances. Once a value for o2 is known, the tapered SVD can be computed
to understand the relationships between solution and data structures, their
resolution, and their variance. For problems of small to moderate size (the
meaning of moderate is constantly shifting, but it is difficult to examine and
interpret matrices of more than order 1000 x 1000), the SVD, whether in
the truncated or tapered forms is probably the method of choice-because it
provides the fullest information about data and its relationship to the solu-
tion. Its only disadvantages are that one can be easily overwhelmed by the
available information, particularly if a range of solutions must be examined,
and it cannot take advantage of sparsity in large problems. The SVD has
a flexibility beyond even what we have discussed should the investigator
know enough to justify it. One could, for example, change the degree of
tapering in each of the terms of (3.4.133)—(3.4.134) should there be reason
to repartition the variance between solution and noise, or some terms could
be dropped out of the truncated form at will.

The more general situation, in which structured solution and noise co-
variances are available, is then readily understood. These matrices are used
to reduce the problem by coordinate transformation to ones in which the
structure has been removed. At that point, the methods for unstructured
problems are used, with the resulting solution, residuals, covariances, and
resolution matrices being transformed back to the original physical spaces.

Both ordinary weighted least squares and the SVD applied to row- and
column-weighted equations are best thought of as approximation, rather
than estimation, methods and thus have a lot to recommend them. In par-
ticular, the truncated SVD does not produce a minimum variance estimate
‘the way the tapered version can. On the other hand, the tapered SVD
(along with the Gauss-Markov estimate, or the tapered least-squares solu-
tions) produces the minimum variance property by tolerating a bias in the
solution. Whether the bias is more desirable than a larger uncertainty is
a decision that the user must make. But the reader is warned against the
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belief that there is any single best method whose determination should take
precedence over understanding the problem physics.

A useful working definition now of an inverse method, distinguishing them
from mere curve fitting, is that it quantifies the extent to which elements of
a system have been determined by focusing on uncertainties in the solution.
Different approaches have different desirable features, including (1) separa-
tion of nullspace uncertainties from those owing to observational noise, (2)
ability to use prior statistical knowledge, (3) determination of orthogonal
solution structures in terms of orthogonal data structures and of their rel- -
ative importance (data ranking), and (4) ability to trade resolution against
stability.

The statistical discussion here has been qualitative and intuitive with no
claim to rigor. To some extent, the subject of inferring the ocean circulation
from observations and dynamics has not yet evolved to the point where more
than semiquantitative statistical tests seem warranted. One can expect that
ultimately more refined tests leading to adoption or rejection of particular
dynamical models will one day become necessary. The reader wishing a
more careful account of the statistical underpinnings of the subject can
make a beginning with Tarantola (1987) or Backus (1970a,b; 1988a) and
the references there.



