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Abstract The Perturbed Flow

Instabilities in a stratified ocean mixed layer model with surface gravity wave forcing are examined to study Subtracting the balanced background flow from the full equation set gives the perturbation equations. Three Most Unstable Modes for k =1, 1 = 0
the interactions between the surface gravity wave scale and the submesoscale. Linear instabilities at these First, focusing on the vertical velocity equation one can see an O(Ro) perturbation to the background flow 0.8 . .
two scales have been studied independently, however, this work serves to bridge the gap between these from the Stokes vortex force which does not involve any perturbation variables. —— Geostrophic Mode

classes of instability. Wave effects are added to a linearized, stratified upper ocean model through the 0.7/ — Wave Mode
addition of Stokes-drift (a net current in the direction of wave propagation). In the limit of no wave forcing az [W + (U . V)W l_ M(V W' + U W' )] + OCZRO [(u ', V)W '] _ — 2"9 wave Mode
and strong stratification, this system is dominated by symmetric, geostrophic, or Kelvin-Helmholtz ! 5§ ) 5 X

instability. In the limit strong wave forcing, the system is dominated by wave induced shear instability. The
system is studied on a continuum between these two extremes to understand how the geostrophic and
symmetric instabilities evolve as the wave forcing is increased. Initial results show that the wave induced
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modes become the gravest modes at modest wave forcing. The geostrophic mode is initially weakly

amplified by the wave forcing, then at modest wave forcing appears to become a mixed mode. For very small aspect ratio, this Stokes Vortex force term would be the only remaining term in the O(1)
perturbation equations, which would suggest that this term vanishes but it’s clear from the background

Figure 3. Growth rates vs u for the three most
unstable modes for k=1, 1 =0, Ri = 0.9, a =
0.006, Ro =0.01, 6 = /4.
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Fig. 1 shows that the most unstable mode
quickly becomes high wavenumber as wave
forcing is increased, however, it is clear from
fig. 3 that this does not mean that the
geostrophic mode is gone, but rather sub-
dominant. It is also clear that the geostrophic
mode is weakly modulated by the wave forcing.
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. . flow that it does not. This motivates posing an ansatz for the perturbation pressure, 0.2
Scaling the Equations , , ) -
7'(x,3.2.0) = ¢'(x.y.2.)~ tRo -M* [ U,dz
The effect of the wave forcing is captured by considering the Boussinesq, wave-filtered Craik-Leibovich 2 -1 00 5 10 15
Equations (Craik and Leibovich, 1976). Coriolis terms are included to include the effects of rotation under - - w
the f-plane approximation. The buoyancy is materially conserved, and advected by the Lagrangian (Eulerian Thus, this term affects the total pressure, but not the small perturbations in pressure (now referring to ¢’) that w=0.6 =1 w=4
and Stokes) flow. relate to the velocity perturbations. Then assuming a? << Ro, and posing a normal mode anzatz, 0— 0 | 0 - 4 Vertical
igure 4. Vertica
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Acceleration Advection  Stokes Vortex Coriolis and Stokes Dynamic Buoyancy Diffusion and similarly for v/, w’, b’, and ¢’, the perturbation equations become, | | V., an d_ b
Coriolis Pressure . . N £ -0.4 £ -0.4 £ -0.4 corresponding to
(lO' +1kU ) I — (lkuVS + 1) v+U w+ikg=0 & & S the growth rates
a u+ (ll+U )V b _ O Q _06! ! Q _0.6! 1 Q _0.6! shown in Fig. 3.
t ) _ _ . _ The upper row
—7 417 ' / ¥ D17l = ~0.8/[—u ~0.8! _0.8! corresponds to
V-u=0 (1 llMUS)M+[lO'+lk(U+MUS)+llV]V+VZW+ll¢ 0 — o oo
W _ O at 7 = O _1 _1 —) gl \\ gl \ - | mode, and the
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For the moment, the only boundary condition is no flux through the top and bottom, however, in future _MU l/t _ MVV + lO— + lk(U + MU ) W — b + ¢ — O corresponds to
work, a surface stress condition will be included to include the effects of surface wind stress. This is R < the 2nd wave
provides a challenge of handle a destabilizing front due to Ekman transport. The primary concern at the 0 mode.
moment is the interactions between wave induced, geostrophic, and symmetric instability, thus convective ~ o~ . , — ~
instability due to Ekman transport is avoided by considering a swell (rather than wind-wave) dominated VZ + Riw +|10 + lk(U + MUS) b = ()
region.
It is expected that there will be significant horizontal and time scale separation, thus motivating the
horizontal variations to be non-dimensionalized by two different scales (I and L) with associated advective lkﬁ + 11\7 + VT/ — O | -
timescales (t and T). The wave field (thus Stokes drift) will be considered invariant horizontally, and in time. "g §
Non-dimensional numbers In the case of no wave forcing (i = 0) the background and perturbation equations are identically the ;1 a 1 a
Ro = f_L Ri = N;JIZ{2 — % 1= Us(O) baroclinic, non-hydrostatic equation set described by Stone (1971).
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. H 771?,CL£IZ 10 ) . Z . The perturbation equations are solved numerically using Chebyshev spectral modes. Figure 1 shows the The vertical structure of each mode shows that the geostrophic mode (fig. 4, upper row) is significantl
(9:,;, ay Taw faXa Tay + faY 0, ﬁaz growth rates (o) for Ri = 0.9, a = 0.006, Ro = 0.01, and various values of u at various horizontal wavenumbers & P & UPP 5 Y

influenced by the strongly surface intensified Stokes drift, suggesting that the geostrophic mode becomes a

mixed mode at modest wave forcing. The wave mode (fig. 4, lower row) shows significant vertical structure

. Figure 1. Maximum growth rate near thg surfage, and very |I'th|e at depth. This is just what one would expect from a mode generated by the
Imo) for Ri = 0.9, a = 0.006, Ro = surface intensified Stokes drift.

0.01, 6 = /4, and the indicated
. Each panel is normalized to

Conclusions and Future

that value of p.

k and I. Ri = 0.9 is chosen so that both geostrophic and symmetric modes exist in comparable magnitude
when there is no wave forcing (upper left panel of figure 1).

Ri=0.9 u=0max=0.24 Ri=0.9 u=0.08 max =0.23 Ri=0.9 u=0.2 max =0.43
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The Background Flow

Assuming these scalings, the flow is decomposed into average and perturbation terms. The averaged terms
represent the large scale background flow, with the small horizontal space and fast time scales (x,y,t)
averaged over. 5
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and similarly for v/,w’,b’, and 1’, except that b’, ™’ ~ O(Ro?). The buoyancy and pressure scale with Ro? so 1 high wavenumber. This is unlike e |n the Ro << 1 limit with constant vertical and horizontal stratification. the
that the small scale pressure perturbations scale with u’?, unlike the large scale pressure which is scaled in - 10 - 10 | 1,5 the transition to Kelvin Helmholtz 1 i2n back d f : ffacted by th forc Th ' It
expectation of near thermal wind balance. Averaging the equations over the small scales and assuming Ro 5 5 instability in that increasing Ri agranglarT dCKgroun OW IS Uhna e.C e Y the wave qrcmg. e result Is
<< 1 gives the O(1) background ﬂow : : | |,, without Stokes drift results in a thermal wind balance of the Lagrangian flow. The same is not true of general
(V + MV ) 0 ° 20 ° stronger symmetric instability fronts and filaments in the presence of wave forcing (McWilliams and Fox-
Ri = ogu-4max 1.1 ogu-smax 1.61 Ri=0.9 =16 max =33 (high I, low k). The Stokes drift Kemper, 2013)
— - ' 20 ® does increase the Eulerian Ri, ’ ' _ . _
HY + (U + MUS) =() \/J 15 however the Lagrangian Ri (which * Although the Lagrangian background flow is unaffected by the wave forcing, the
ﬁ — 0 10 is listed) is unchanged in the O(Ro) perturbation to the O(1) background flow shows significant influence of
7 B = 5 presence of Stokes drift. the Stokes vortex force in the perturbation momentum equations.
_ _ _ _ _ /\‘? Therefore, the high wavenumber . Th h h o ifi .. : , g di ,
B +(U+MU )B +(V +MV )B —() - 0 instabilities shown are expected .e gr9wt rate shows §|gn| cant sensm.wty.to wave F)rcm.g and wave .|rect|on
I S S to be due to the Stokes vortex with high wavenumber instabilities dominating flow with high wave forcing.
= 278 e 0.97 178 maxe 089 ; terms in the perturbation * The geostrophic mode is weakly modulated at low wave forcing, and becomes a

U,+V, =0
If the background buoyancy is assumed to be time invariant, and an initial condition on buoyancy is

Bl,=M?Y + N’z

equations : : :
d mixed geostrophic-wave mode at moderate wave forcing.

* Future work aims to further characterize the effects of wave forcing on the

Figure 2. Maximum growth rate geostrophic and symmetric instabilities.

Im(o) for Ri=0.9, a =0.006, Ro =

Velocity, or “Lagrangian Thermal Wind Baiance.” Theretore, the Lograngian backaround flow fs unaffected 001, = 1, and the indicated.  * Long term goals include adding a surface wind stress so that the fimit of Cral;
] ° V4 2 4 . . . . . o e
by the presence of Stokes drift. Despite this, it will be shown that the same is not true of the perturbed k % Each panel is notrr:naltlzefd tct)r;chte LerO.VICh mSta.b.I“ty can be reaChed' . . .
flow. The background, Eulerian flow is entirely determined by the background buoyancy and the imposed u =0max=0.24 = 0a/4 max=1.71 \ZTSIemOl;rg g;ﬁ\;vlocrjﬁinoorf thae * The linear stability results discussed here are intended to guide numerical
Etokes dbrift. The Stolfes drift -ishcht())sen tq be exponentially decaying with depth, with a decay scale chosen 0.6 banels cor.responds to the simulations of the full Boussinesq Craik-Leibovich equations, where the most
ere to be H/10, consistent with observations. direction of the Stokes drift 8 interesting regions of the Ri, a, Ro, i, and B parameter space (as determined by
—— - 0.5 . . . - . . .
[ = —MZZ _ MU 0 (e.g. 8 =m/4is the upper right the linear stability analysis) will be examined.
_ S ‘US‘ =€ panel).
V =— MV (3) 2 4 2 s | ™ f
S k k
Refterences

W =0 )

B = M Y + N e 6 1s the angle between the Stokes drift and the thermal wind

1= MZYZ+%N2z2

e Craik, A. D. D., and Leibovich, S. (1976). A rational model for Langmuir circulations. J. Fluid Mech, 73,
401-426.

 McWilliams, J. C., and Fox-Kemper, B. (2012). Oceanic wave-balanced surface fronts and filaments. J.
Fluid Mech, Submitted.

e Stone, P. H. (1971). Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech, 45, 659-671.




