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Abstract Same mean state, different dynamics
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any previous incarnation of CCSM. However, P_HI | 600-649 | 1.041 9336 | 9751 1486 | 0528 |

within a long model run the behavior of ENSO . - - - - - o . |
it @ degcadal eSS - evEn winan e The model run used in this study is a 700-year integration under pre-industrial conditions. During 2-3 years: delayed oscillator, P_HI and lr’fLO

mean state remains the same. This study two 50-year intervals having nearly identical mean states, NINO3 variance differs by a factor of 2!
applies the multitaper method/singular value

decomposition (MTM-SVD) to diagnose

distinct dynamical modes within ENSO. The ifui . o

frequencies of interest are shown to change Ille“t“vlng mones' MTM s“n

during periods of high/low ENSO activity, as

well as the appearance of those modes. Both
delayed oscillator-like and recharge/

LFV, Mode1
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. . ” . . no ENSO! 9 delayed oscillator and period
The multitaper method/singular value decomposition (MTM-SVD) analysis used here is a 6-10 years: recharge/ 90%|. recharge/discharge? g‘ﬁes in
decomposition in both the spatial and spectral dimensions. A Fourier transform is applied to the time : discharge dynamics 5 )

) i ) R series at each model grid point, then spectra are separated into orthogonal components using Slepian 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
?AZ?}?;%;I}kgedgmm:rsa;irgnsgza e'g:'iﬁggg sequences. Finally, the matrix of (complex) spectra is subjected to a singular value decomposition to Period (years) Period (years)
modes which is responsible for generating identify the spatial pattern associated with that mode of variability. The resulting set of orthogonal Local Fractional Variance (LFV) for the dominant mode of oscillation in P_LO and

. ) - modes retains phase information, allowing the sequence of events in all fields (here, SST, thermocline P_HI, with bootstrap confidence intervals overlaid. ENSO-like patterns are seen
el 1 @terll s HEa el iy depth and zonal wind stress) to be determined for each mode. where modes are significant at > 90%.
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/ m”;' At left are shown the amplitude of
:,;;”m,f N 3 .. oscillations in SST, thermocline
. . depth and zonal wind stress as a
function of oscillation period and

latitude, averaged over 210-220 E

(central Pacific). Here distinct

patterns are seen in P_HI and

© P_LO. Below ~3.5 years,

200 250 . - oscillations in the Northern

Longitude (degrees E) Longitude (degrees E) Hemisphere dominate; at |0nger
Arrow plots for P_HI mode 1 at 2.1 years (left) and P_LO mode 1 at 6.25 years (right). Amplitude of oscillation is reflected in the length of the arrows; the periods the opposite seems to be

angle represents the phase lag relative to NINO3. Shaded green areas lead SST; shaded blue areas lag SST. ) i : oty & " true in both P_HI and P_LO.

pitude, 210-220 E:P,, Mode? Additionally, in P_LO from 6-10
years a strong thermocline depth
signal is seen at ~15 S, where the
gradient in zonal wind stress is
largest. This is characteristic of
recharge/discharge dynamics.
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Conclusions

The vastly improved ENSO in CCSM3.5 shows dramatic changes on decadal
timescales, even under constant forcing conditions. Even during periods having
the same mean state, total NINO3 variance may change by a factor of 2.

We have used MTM-SVD analysis to identify distinct dynamical modes driving
ENSO within the model, and find that modes having the appearance of both
“delayed oscillator” and “recharge/discharge” dynamics are present. However, the
relative importance of these dynamics changes with time within the run; in
" " particular, recharge/discharge dynamics are much more important during “P_LO”,
} " - N i when model ENSO is 2x weaker than during “P_HI". We hypothesize that this is
T T T e e T ™ U ongitade T T onghade due to an overall discharge of heat from the basin during P_LO, making all ENSO
modes less efficient.

This represents a first cut at examining model ENSO dynamics under pre-
industrial conditions; additional work is necessary to catalog the full range of
dynamical variability.
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At 2.1 years in P_HI, wave dynamics are visible. Kelvin waves travel At 6.25 years in P_LO, dynamics are visibly different. The equatorial
eastward across the equator (panel a), to set up the El Nifio phase of Kelvin wave signal has vanished, replaced by an alternating north/
the oscillation (panel b). When the signal reaches the eastern south thermocline signal. This signal is accompanied by a large wind
boundary, an off-equatorial Rossby wave signal is created, stress curl and associated Sverdrup transport, driving heat in and out
propagating westward (panel c) across the basin. of the basin.




